ABSTRACT Millisecond pulsars are very likely the main source of gamma-ray emission from globular clusters. However, the relative contributions of two separate emission processes – curvature radiation from millisecond pulsar magnetospheres versus inverse Compton emission from relativistic pairs launched into the globular cluster environment by millisecond pulsars – have long been unclear. To address this, we search for evidence of inverse Compton emission in 8-yr Fermi–LAT data from the directions of 157 Milky Way globular clusters. We find a mildly statistically significant (3.8σ) correlation between the measured globular cluster gamma-ray luminosities and their photon field energy densities. However, this may also be explained by a hidden correlation between the photon field densities and the stellar encounter rates of globular clusters. Analysed in toto, we demonstrate that the gamma-ray emission of globular clusters can be resolved spectrally into two components: (i) an exponentially cut-off power law and (ii) a pure power law. The latter component – which we uncover at a significance of 8.2σ – has a power index of 2.79 ± 0.25. It is most naturally interpreted as inverse Compton emission by cosmic-ray electrons and positrons injected by millisecond pulsars. We find the luminosity of this power-law component is comparable to, or slightly smaller than, the luminosity of the curved component, suggesting the fraction of millisecond pulsar spin-down luminosity into relativistic leptons is similar to the fraction of the spin-down luminosity into prompt magnetospheric radiation.
more »
« less
A gamma-ray stacking survey of Fermi-LAT undetected globular clusters
ABSTRACT We present evidence for $$\gamma$$-ray emission from a stacked population of 39 high-latitude globular clusters (GCs) not detected in the Fermi Point Source Catalogue, likely attributable to populations of millisecond pulsars within them. In this work, we use 13 yr of data collected by the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope to search for a cumulative signal from undetected GCs and compared them to control fields (CFs), selected to match the celestial distribution of the target clusters so as to distinguish the $$\gamma$$-ray signal from background emission. The joint likelihood distribution of the GCs has a significant separation ($$\sim 4\sigma$$) from that of the CFs. We also investigate correlations between detected cluster luminosities and other cluster properties such as distance, the number of millisecond pulsars associated with each cluster, and stellar encounter rate but find no significant relationships.
more »
« less
- Award ID(s):
- 2219090
- PAR ID:
- 10552668
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 535
- Issue:
- 1
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 434-442
- Size(s):
- p. 434-442
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present 294 pulsars found in GeV data from the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. Another 33 millisecond pulsars (MSPs) discovered in deep radio searches of LAT sources will likely reveal pulsations once phase-connected rotation ephemerides are achieved. A further dozen optical and/or X-ray binary systems colocated with LAT sources also likely harbor gamma-ray MSPs. This catalog thus reports roughly 340 gamma-ray pulsars and candidates, 10% of all known pulsars, compared to ≤11 known before Fermi. Half of the gamma-ray pulsars are young. Of these, the half that are undetected in radio have a broader Galactic latitude distribution than the young radio-loud pulsars. The others are MSPs, with six undetected in radio. Overall, ≥236 are bright enough above 50 MeV to fit the pulse profile, the energy spectrum, or both. For the common two-peaked profiles, the gamma-ray peak closest to the magnetic pole crossing generally has a softer spectrum. The spectral energy distributions tend to narrow as the spindown power decreases to its observed minimum near 1033erg s−1, approaching the shape for synchrotron radiation from monoenergetic electrons. We calculate gamma-ray luminosities when distances are available. Our all-sky gamma-ray sensitivity map is useful for population syntheses. The electronic catalog version provides gamma-ray pulsar ephemerides, properties, and fit results to guide and be compared with modeling results.more » « less
-
ABSTRACT We use Fermi-LAT data to analyse the faint gamma-ray source located at the centre of the Sagittarius (Sgr) dwarf spheroidal galaxy. In the 4FGL-DR3 catalogue, this source is associated with the globular cluster, M54. We investigate the spectral energy distribution and spatial extension of this source, with the goal of testing two hypotheses: (1) the emission is due to millisecond pulsars within M54, or (2) the emission is due to annihilating dark matter from the Sgr halo. For the pulsar interpretation, we consider a two-component model which describes both the lower-energy magnetospheric emission and possible high-energy emission arising from inverse Compton scattering. We find that this source has a point-like morphology at low energies, consistent with magnetospheric emission, and find no evidence for a higher-energy component. For the dark matter interpretation, we find the signal favours a dark matter mass of mχ = 29.6 ± 5.8 GeV and an annihilation cross section of $$\sigma v = (2.1 \pm 0.59) \times 10^{-26} \, \text{cm}^3$$ s−1 for the $$b \bar{b}$$ channel (or mχ = 8.3 ± 3.8 GeV and $$\sigma v = (0.90 \pm 0.25) \times 10^{-26} \, \text{cm}^3$$ s−1 for the τ+τ− channel), when adopting a J-factor of $$J=10^{19.6} \, \text{GeV}^2 \, \text{cm}^{-5}$$. This parameter space is consistent with gamma-ray constraints from other dwarf galaxies and with dark matter interpretations of the Galactic Centre Gamma-Ray Excess.more » « less
-
Abstract We present the discovery and timing solutions of four millisecond pulsars (MSPs) discovered in the Arecibo 327 MHz Drift-Scan Pulsar Survey. Three of these pulsars are in binary systems, consisting of a redback (PSR J2055+1545), a black widow (PSR J1630+3550), and a neutron star–white dwarf binary (PSR J2116+1345). The fourth MSP, PSR J2212+2450, is isolated. We present the multiyear timing solutions as well as polarization properties across a range of radio frequencies for each pulsar. We perform a multiwavelength search for emission from these systems and find an optical counterpart for PSR J2055+1545 in Gaia DR3, as well as a gamma-ray counterpart for PSR J2116+1345 with the Fermi-LAT telescope. Despite the close colocation of PSR J2055+1545 with a Fermi source, we are unable to detect gamma-ray pulsations, likely due to the large orbital variability of the system. This work presents the first two binaries found by this survey with orbital periods shorter than a day; we expect to find more in the 40% of the survey data that have yet to be searched.more » « less
-
Abstract We have searched for radio pulsations toward 49 Fermi Large Area Telescope (LAT) 1FGL Catalogγ-ray sources using the Green Bank Telescope at 350 MHz. We detected 18 millisecond pulsars (MSPs) in blind searches of the data; 10 of these were discoveries unique to our survey. 16 are binaries, with eight having short orbital periodsPB< 1 day. No radio pulsations from young pulsars were detected, although three targets are coincident with apparently radio-quietγ-ray pulsars discovered in LAT data. Here, we give an overview of the survey and present radio andγ-ray timing results for the 10 MSPs discovered. These include the only isolated MSP discovered in our survey and six short-PBbinary MSPs. Of these, three have very-low-mass companions (Mc≪ 0.1M⊙) and hence belong to the class of black widow pulsars. Two have more massive, nondegenerate companions with extensive radio eclipses and orbitally modulated X-ray emission consistent with the redback class. Significantγ-ray pulsations have been detected from nine of the discoveries. This survey and similar efforts suggest that the majority of Galacticγ-ray sources at high Galactic latitudes are either MSPs or relatively nearby nonrecycled pulsars, with the latter having on average a much smaller radio/γ-ray beaming ratio as compared to MSPs. It also confirms that past surveys suffered from an observational bias against finding short-PBMSP systems.more » « less
An official website of the United States government
