skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improved modeling of detector response effects in phonon-based crystal detectors used for dark matter searches
Various dark matter search experiments employ phonon-based crystal detectors operated at cryogenic temperatures. Some of these detectors, including certain silicon detectors used by the SuperCDMS Collaboration, are able to achieve single-charge sensitivity when a voltage bias is applied across the detector. The total amount of phonon energy measured by such a detector is proportional to the number of electron-hole pairs created by the interaction. However, crystal impurities and surface effects can cause propagating charges to either become trapped inside the crystal or create additional unpaired charges, producing nonquantized measured energy as a result. A new analytical model for describing these detector response effects in phonon-based crystal detectors is presented. This model improves upon previous versions by demonstrating how the detector response, and thus the measured energy spectrum, is expected to differ depending on the source of events. We use this model to extract detector response parameters for SuperCDMS HVeV detectors, and illustrate how this robust modeling can help statistically discriminate between sources of events in order to improve the sensitivity of dark matter search experiments.  more » « less
Award ID(s):
2111324 2411598
PAR ID:
10552673
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
Physical Review D
Date Published:
Journal Name:
Physical Review D
Volume:
109
Issue:
11
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The SABRE (Sodium-iodide with Active Background REjection) experiment is a new detector based on NaI(Tl) scintillating crystals for the dark matter detection through the annual modulation. With ultra-pure crystals and an active veto system, based on liquid scintillator surrounding the crystal array, SABRE will reach unprecedented low background and the highest sensitivity among the present NaI(Tl) experiments. Moreover SABRE will be the first dark matter search with twin detectors located in the North and South hemispheres, in Gran Sasso National Laboratories (LNGS), Italy, and Stawell Underground Laboratories (SUPL), Australia, respectively. The double location will help to quantify possible seasonal effects, and is a unique feature to identify a modulation of dark matter origins. SABRE is presently in the Proof-of-Principle (PoP) phase, with the goal to measure the crystal intrinsic and cosmogenic backgrounds of one 5 kg crystal and the active veto efficiency. We have performed a full geometry Monte Carlo simulation in order to evaluate the background contributions in the two distinct operation modes foreseen for the PoP: the potassium Measurement Mode (KMM) and the Dark Matter Measurement Mode (DMM), where the liquid scintillator detector is used in coincidence or anti-coincidence with the crystal, respectively. This paper presents the results of a detailed background simulation and the expected sensitivity for the SABRE full scale experiment. 
    more » « less
  2. Abstract The futureRicochetexperiment aims to search for new physics in the electroweak sector by measuring the Coherent Elastic Neutrino-Nucleus Scattering process from reactor antineutrinos with high precision down to the sub-100 eV nuclear recoil energy range. While theRicochetcollaboration is currently building the experimental setup at the reactor site, it is also finalizing the cryogenic detector arrays that will be integrated into the cryostat at the Institut Laue Langevin in early 2024. In this paper, we report on recent progress from the Ge cryogenic detector technology, called the CryoCube. More specifically, we present the first demonstration of a 30 eVee (electron equivalent) baseline ionization resolution (RMS) achieved with an early design of the detector assembly and its dedicated High Electron Mobility Transistor (HEMT) based front-end electronics with a total input capacitance of about 40 pF. This represents an order of magnitude improvement over the best ionization resolutions obtained on similar phonon-and-ionization germanium cryogenic detectors from the EDELWEISS and SuperCDMS dark matter experiments, and a factor of three improvement compared to the first fully-cryogenic HEMT-based preamplifier coupled to a CDMS-II germanium detector with a total input capacitance of 250 pF. Additionally, we discuss the implications of these results in the context of the futureRicochetexperiment and its expected background mitigation performance. 
    more » « less
  3. Baracchini, Elisabetta (Ed.)
    The Scintillating Bubble Chamber (SBC) collaboration is developing liquid-noble bubble chambers for the detection of sub-keV nuclear recoils. These detectors benefit from the electron recoil rejection inherent in moderately-superheated bubble chambers with the addition of energy reconstruction provided from the scintillation signal. The ability to measure low-energy nuclear recoils allows the search for GeV-scale dark matter and the measurement of coherent elastic neutrino-nucleus scattering on argon from MeV-scale reactor antineutrinos. The first physics-scale detector, SBC-LAr10, is in the commissioning phase at Fermilab, where extensive engineering and calibration studies will be performed. In parallel, a functionally identical low-background version, SBC-SNOLAB, is being built for a dark matter search underground at SNOLAB. SBC-SNOLAB, with a 10 kg-yr exposure, will have sensitivity to a dark matter–nucleon cross section of 2×10−42 cm2 at 1 GeV/c2 dark matter mass, and future detectors could reach the boundary of the argon neutrino fog with a tonne-yr exposure. In addition, the deployment of an SBC detector at a nuclear reactor could enable neutrino physics investigations including measurements of the weak mixing angle and searches for sterile neutrinos, the neutrino magnetic moment, and the light Z’ gauge boson. 
    more » « less
  4. Abstract The SABRE (Sodium Iodide with Active Background REjection) experiment will search for an annually modulating signal from dark matter using an array of ultra-pure NaI(Tl) detectors surrounded by an active scintillator veto to further reduce the background. The first phase of the experiment is the SABRE Proof of Principle (PoP), a single 5 kg crystal detector operated in a liquid scintillator filled vessel at Laboratori Nazionali del Gran Sasso (LNGS). The SABRE-PoP installation is underway with the goal of running in 2018 and performing the first in situ measurement of the crystal background, testing the veto efficiency, and validating the SABRE concept. The second phase of SABRE will be twin arrays of NaI(Tl) detectors operating at LNGS and at the Stawell Underground Physics Laboratory (SUPL) in Australia. By locating detectors in both hemispheres, SABRE will minimize seasonal systematic effects. This paper presents the status report of the SABRE activities as well as the results from the most recent Monte Carlo simulation and the expected sensitivity. 
    more » « less
  5. Abstract A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton–proton collision data corresponding to an integrated luminosity of 16.1 $$\,\text {fb}^{-1}$$ fb - 1 , collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 $$\,\text {GeV}$$ GeV are excluded and further sensitivity is explored towards higher masses. 
    more » « less