The future
This content will become publicly available on February 1, 2025
The future
- Award ID(s):
- 1806251
- NSF-PAR ID:
- 10506692
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- The European Physical Journal C
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 84
- Issue:
- 2
- ISSN:
- 1434-6052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Ricochet experiment aims at searching for new physics in the electroweak sector by providing a high precision measurement of the Coherent Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV nuclear recoil energy range. The experiment will deploy a kg-scale low-energy-threshold detector array combining Ge and Zn target crystals 8.8 m away from the 58 MW research nuclear reactor core of the Institut Laue Langevin (ILL) in Grenoble, France. Currently, theRicochet Collaboration is characterizing the backgrounds at its future experimental site in order to optimize the experiment’s shielding design. The most threatening background component, which cannot be actively rejected by particle identification, consists of keV-scale neutron-induced nuclear recoils. These initial fast neutrons are generated by the reactor core and surrounding experiments (reactogenics), and by the cosmic rays producing primary neutrons and muon-induced neutrons in the surrounding materials. In this paper, we present theRicochet neutron background characterization using He proportional counters which exhibit a high sensitivity to thermal, epithermal and fast neutrons. We compare these measurements to the$$^3$$ Ricochet Geant4 simulations to validate our reactogenic and cosmogenic neutron background estimations. Eventually, we present our estimated neutron background for the futureRicochet experiment and the resulting CENNS detection significance. Our results show that depending on the effectiveness of the muon veto, we expect a total nuclear recoil background rate between 44 ± 3 and 9 ± 2 events/day/kg in the CENNS region of interest, i.e. between 50 eV and 1 keV. We therefore found that theRicochet experiment should reach a statistical significance of 4.6 to 13.6 for the detection of CENNS after one reactor cycle, when only the limiting neutron background is considered.$$\sigma $$ -
Abstract The impurity density in high-purity germanium detectors is crucial to understand and simulate such detectors. However, the information about the impurities provided by the manufacturer, based on Hall effect measurements, is typically limited to a few locations and comes with a large uncertainty. As the voltage dependence of the capacitance matrix of a detector strongly depends on the impurity density distribution, capacitance measurements can provide a path to improve the knowledge on the impurities. The novel method presented here uses a machine-learned surrogate model, trained on precise GPU-accelerated capacitance calculations, to perform full Bayesian inference of impurity distribution parameters from capacitance measurements. All steps use open-source Julia software packages. Capacitances are calculated with SolidStateDetectors.jl , machine learning is done with Flux.jl and Bayesian inference performed using BAT.jl . The capacitance matrix of a detector and its dependence on the impurity density is explained and a capacitance bias-voltage scan of an n -type true-coaxial test detector is presented. The study indicates that the impurity density of the test detector also has a radial dependence.more » « less
-
Abstract For the first time, time-dependent internal charge amplification through impact ionization has been observed in a planar germanium (Ge) detector operated at cryogenic temperature. In a time period of 30 and 45 min after applying a bias voltage, the charge energy corresponding to a baseline of the 59.54 keV
rays from a$$\gamma $$ Am source is amplified for a short period of time and then decreases back to the baseline. The amplification of charge energy depends strongly on the applied positive bias voltage with drifting holes across the detector. No such phenomenon is visible with drifting electrons across the detector. We find that the observed charge amplification is dictated by the impact ionization of charged states, which has a strong correlation with impurity level and applied electric field. We analyze the dominant physics mechanisms that are responsible for the creation and the impact ionization of charged states. Our analysis suggests that the appropriate level of impurity in a Ge detector can enhance charge yield through the impact ionization of charged states to achieve extremely low-energy detection threshold (< 10 meV) for MeV-scale dark matter searches if the charge amplification can be stabilized.$$^{241}$$ -
A bstract Coherent elastic neutrino-nucleus scattering was first experimentally established five years ago by the COHERENT experiment using neutrinos from the spallation neutron source at Oak Ridge National Laboratory. The first evidence of observation of coherent elastic neutrino-nucleus scattering with reactor antineutrinos has now been reported by the Dresden-II reactor experiment, using a germanium detector. In this paper, we present constraints on a variety of beyond the Standard Model scenarios using the new Dresden-II data. In particular, we explore the constraints imposed on neutrino non-standard interactions, neutrino magnetic moments, and several models with light scalar or light vector mediators. We also quantify the impact of their combination with COHERENT (CsI and Ar) data. In doing so, we highlight the synergies between spallation neutron source and nuclear reactor experiments regarding beyond the Standard Model searches, as well as the advantages of combining data obtained with different nuclear targets. We also study the possible signal from beyond the Standard Model scenarios due to elastic scattering off electrons (which would pass selection cuts of the COHERENT CsI and the Dresden-II experiments) and find more stringent constraints in certain parts of the parameter space than those obtained considering coherent elastic neutrino-nucleus scattering.more » « less
-
Abstract The detection of low-energy deposition in the range of sub-eV through ionization using germanium (Ge) with a bandgap of $$\sim $$ ∼ 0.7 eV requires internal amplification of the charge signal. This can be achieved through high electric field that accelerates charge carriers, which can then generate more charge carriers. The minimum electric field required to generate internal charge amplification is derived for different temperatures. We report the development of a planar point contact Ge detector in terms of its fabrication and the measurements of its leakage current and capacitance as a function of applied bias voltage. With the determination of the measured depletion voltage, the field distribution is calculated using GeFiCa, which predicts that the required electric field for internal charge amplification can be achieved in proximity to the point contact. The energy response to an Am-241 source is characterized and discussed. We conclude that such a detector with internal charge amplification can be used to search for low-mass dark matter.more » « less