skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coherent Acoustic Control of Defect Orbital States in the Strong-Driving Limit
We use a bulk acoustic wave resonator to demonstrate coherent control of the excited orbital states in a diamond nitrogen-vacancy ( N V ) center at cryogenic temperature. Coherent quantum control is an essential tool for understanding and mitigating decoherence. Moreover, characterizing and controlling orbital states is a central challenge for quantum networking, where optical coherence is tied to orbital coherence. We study resonant multiphonon orbital Rabi oscillations in both the frequency and time domain, extracting the strength of the orbital-phonon interactions and the coherence of the acoustically driven orbital states. We reach the strong-driving limit, where the physics is dominated by the coupling induced by the acoustic waves. We find agreement between our measurements, quantum master-equation simulations, and a Landau-Zener transition model in the strong-driving limit. Using perturbation theory, we derive an expression for the orbital Rabi frequency versus the acoustic drive strength that is nonperturbative in the drive strength and agrees well with our measurements for all acoustic powers. Motivated by continuous-wave spin-resonance-based decoherence protection schemes, we model the orbital decoherence and find good agreement between our model and our measured few-to-several-nanoseconds orbital decoherence times. We discuss the outlook for orbital decoherence protection. Published by the American Physical Society2024  more » « less
Award ID(s):
2110250
PAR ID:
10552759
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
APS
Date Published:
Journal Name:
PRX Quantum
Volume:
5
Issue:
3
ISSN:
2691-3399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-coherence qubits, which can store and manipulate quantum states for long times with low error rates, are necessary building blocks for quantum computers. Here we propose a driven superconducting erasure qubit, the Floquet fluxonium molecule, which minimizes bit-flip rates through disjoint support of its qubit states and suppresses phase flips by a novel second-order insensitivity to flux-noise dephasing. We estimate the bit-flip, phase-flip, and erasure rates through numerical simulations, with predicted coherence times of approximately 50 ms in the computational subspace and erasure lifetimes of about 500 μ s . We also present a protocol for performing high-fidelity single-qubit rotation gates via additional flux modulation, on timescales of roughly 500 ns, and propose a scheme for erasure detection and logical readout. Our results demonstrate the utility of drives for building new qubits that can outperform their static counterparts. Published by the American Physical Society2024 
    more » « less
  2. Integrated photonic microresonators have become an essential resource for generating photonic qubits for quantum information processing, entanglement distribution and networking, and quantum communications. The pair-generation rate is enhanced by reducing the microresonator radius, but this comes at the cost of increasing the frequency-mode spacing and reducing the quantum information spectral density. Here, we circumvent this rate-density trade-off in an Al Ga As -on-insulator photonic device by multiplexing an array of 20 small-radius microresonators, each producing a 650-GHz-spaced comb of time-energy entangled-photon pairs. The resonators can be independently tuned via integrated thermo-optic heaters, enabling control of the mode spacing from degeneracy up to a full free spectral range. We demonstrate simultaneous pumping of five resonators with up to 50 -GHz relative comb offsets, where each resonator produces pairs exhibiting time-energy entanglement visibilities up to 95 % , coincidence-to-accidental ratios exceeding 5000 , and an on-chip pair rate up to 2.6 G Hz / mW 2 per comb line—an improvement over prior work by more than a factor of 40. As a demonstration, we generate frequency-bin qubits in a maximally entangled two-qubit Bell state with fidelity exceeding 87 % ( 90 % with background correction) and detected frequency-bin entanglement rates up to 7 kHz (an approximately 70 MHz on-chip pair rate) using a pump power of approximately 250 μ W . Multiplexing small-radius microresonators combines the key capabilities required for programmable and dense photonic qubit encoding while retaining high pair-generation rates, heralded single-photon purity, and entanglement fidelity. Published by the American Physical Society2025 
    more » « less
  3. In this paper, we introduce an algorithm for extracting topological data from translation invariant generalized Pauli stabilizer codes in two-dimensional systems, focusing on the analysis of anyon excitations and string operators. The algorithm applies to Z d qudits, including instances where d is a nonprime number. This capability allows the identification of topological orders that differ from the Z d toric codes. It extends our understanding beyond the established theorem that Pauli stabilizer codes for Z p qudits (with p being a prime) are equivalent to finite copies of Z p toric codes and trivial stabilizers. The algorithm is designed to determine all anyons and their string operators, enabling the computation of their fusion rules, topological spins, and braiding statistics. The method converts the identification of topological orders into computational tasks, including Gaussian elimination, the Hermite normal form, and the Smith normal form of truncated Laurent polynomials. Furthermore, the algorithm provides a systematic approach for studying quantum error-correcting codes. We apply it to various codes, such as self-dual CSS quantum codes modified from the two-dimensional honeycomb color code and non-CSS quantum codes that contain the double semion topological order or the six-semion topological order. Published by the American Physical Society2024 
    more » « less
  4. Ultracold atomic systems are among the most promising platforms that have the potential to shed light on the complex behavior of many-body quantum systems. One prominent example is the case of a dense ensemble illuminated by a strong coherent drive while interacting via dipole-dipole interactions. Despite being subjected to intense investigations, this system retains many open questions. A recent experiment carried out in a pencil-shaped geometry [Ferioli Nat. Phys. 19, 1345 (2023)] has reported measurements that have seemed consistent with the emergence of strong collective effects in the form of a “superradiant” phase transition in free space, when looking at the light-emission properties in the forward direction. Motivated by the experimental observations, we carry out a systematic theoretical analysis of the steady-state properties of the system as a function of the driving strength and atom number N . We observe signatures of collective effects in the weak-driving regime, which disappear with increasing drive strength as the system evolves into a single-particle-like mixed state comprised of randomly aligned dipoles. Although the steady state features some similarities to the reported superradiant-to-normal nonequilibrium transition, also known as cooperative resonance fluorescence, we observe significant qualitative and quantitative differences, including a different scaling of the critical drive parameter (from N to N ). We validate the applicability of a mean-field treatment to capture the steady-state dynamics under currently accessible conditions. Furthermore, we develop a simple theoretical model that explains the scaling properties by accounting for interaction-induced inhomogeneous effects and spontaneous emission, which are intrinsic features of interacting disordered arrays in free space. Published by the American Physical Society2024 
    more » « less
  5. Searches for pair-produced multijet signatures using data corresponding to an integrated luminosity of 128 fb 1 of proton-proton collisions at s = 13 TeV are presented. A data scouting technique is employed to record events with low jet scalar transverse momentum sum values. The electroweak production of particles predicted in R -parity violating supersymmetric models is probed for the first time with fully hadronic final states. This is the first search for prompt hadronically decaying mass-degenerate higgsinos, and extends current exclusions on R -parity violating top squarks and gluinos. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less