skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hanensula anomala isolated from the Berkeley Pit, Butte, MT, is a metal-specific extremophile
ABSTRACT A yeast-like extremophile organism,Hansenula anomala, has been isolated from the superfund site the Berkeley Pit Lake in Butte, Montana. Studies demonstrateH. anomalagrowth in some of the known Berkeley Pit Lake solutes. Microbial growth dynamics under controlled conditions were compared ofH. anomalafor multiple metal concentrations. Each solute/metal was tested separately at previously reported concentrations on the geochemistry of the Berkeley Pit lake in the first 0.2 m in spring (pH 2.5).H. anomalagrew well with sulfur (S), MgSO4, CaSO4, potassium chloride (KCl), and NaSO4and was inhibited with FeSO4, MnSO4, CuSO4, AlSO4, or ZnSO4. With the addition of elemental S, growth was observed for FeSO4indicating minimal growth rescue. PCR amplification of genomic DNA from the organism using known ribosomal primers indicates the strain to be ATCC8168 (CBS 5759). From this data, it can be concluded thatH. anomalaATCC8168 from the Berkeley Pit is an extremophile that exhibits metal-specific growth.IMPORTANCELaboratory growth studies of a strain ofHansenula anomalafrom the Berkeley Pit have found the organism to be metal specific indicating some unique metabolism possibilities. These studies show that this strain is metal-dependent and provides information about the adaptable tolerance of organisms in superfund sites as well as giving a basis for future bioremediation development utilizingH. anomala.  more » « less
Award ID(s):
2217009
PAR ID:
10552770
Author(s) / Creator(s):
; ; ;
Editor(s):
Hom, Erik_F Y
Publisher / Repository:
Microbiology Spectrum
Date Published:
Journal Name:
Microbiology Spectrum
Volume:
12
Issue:
10
ISSN:
2165-0497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rodrigue, Agnès (Ed.)
    Members of the genusMethylacidiphilumare thermoacidophile methanotrophs with optimal growth temperatures between 50°C and 60°C, and pH between 1.0 and 3.0. These microorganisms, as well as other extremophile bacteria, offer an attractive platform for environmental and industrial biotechnology because of their robust operating conditions and capacity to grow using low-cost substrates. In this study, we isolatedMethylacidiphilum fumariolicumstr. Pic from a crater lake located in the state of Chiapas, Mexico. We sequenced the genome and built a genome-scale metabolic model. The manually curated model contains 667 metabolites, 729 reactions, and 473 genes. Predicted flux distributions using flux balance analysis identified changes in redox trade-offs under methanotrophic and autotrophic conditions (H2+CO2). This was also predicted under heterotrophic conditions (acetone, isopropanol, and propane). Model validation was performed by testing the capacity of the strains to grow using four substrates: CH4, acetone, isopropanol, and LP-Gas. The results suggest that the metabolism ofM. fumariolicumstr. Pic is limited by the regeneration of redox equivalents such as NAD(P)H and reduced cytochromes. 
    more » « less
  2. BackgroundAntimicrobial resistance is a growing concern in canineStaphylococcus pseudintermediusdermatitis. Treatment with rifampicin (RFP) is considered only in meticillin‐resistant and multidrug‐resistantS. pseudintermedius(MDR‐MRSP). Hypothesis/ObjectivesTo determine an optimal RFP dosing for MDR‐MRSP treatment without induction of RFP resistance and identify causal mutations for antimicrobial resistance. Methods and materialsTime–kill assays were performed in a control isolate and three MDR‐MRSP isolates at six clinically relevant concentrations [32 to 1,024 × MIC (the minimum inhibitory concentration)]. Whole‐genome resequencing and bioinformatic analysis were performed in the resistant strains developed in this assay. ResultsThe genomic analysis identified nine antimicrobial resistance genes (ARGs) in MDR‐MRSP isolates, which are responsible for resistance to seven classes of antibiotics. RFP activity against all four isolates was consistent with a time‐dependent and bacteriostatic response. RFP resistance was observed in six of the 28 time–kill assays, including concentrations 64 × MIC in MDR‐MRSP1 isolates at 24 h, 32 × MIC in MDR‐MRSP2 at 48 h, 32 × MIC in MDR‐MRSP3 at 48 h and 256 × MIC in MDR‐MRSP3 at 24 h. Genome‐wide mutation analyses in these RFP‐resistant strains discovered the causal mutations in the coding region of therpoBgene. Conclusions and clinical relevanceA study has shown that 6 mg/kg per os results in plasma concentrations of 600–1,000 × MIC ofS. pseudintermedius. Based on our data, this dose should achieve the minimum MIC (×512) to prevent RFP resistance development; therefore, we recommend a minimum daily dose of 6 mg/kg for MDR‐MRSP pyoderma treatment when limited antibiotic options are available. 
    more » « less
  3. Abstract Elemental sulfur (S80)‐oxidising Sulfolobales (Archaea) dominate high‐temperature acidic hot springs (>80°C, pH <4). However, genomic analyses of S80‐oxidising members of the Sulfolobales reveal a patchy distribution of genes encoding sulfur oxygenase reductase (SOR), an S80disproportionating enzyme attributed to S80oxidation. Here, we report the S80‐dependent growth of two Sulfolobales strains previously isolated from acidic hot springs in Yellowstone National Park, one of which associated with bulk S80during growth and one that did not. The genomes of each strain encoded different sulfur metabolism enzymes, with only one encoding SOR. Dialysis membrane experiments showed that direct contact is not required for S80oxidation in the SOR‐encoding strain. This is attributed to the generation of hydrogen sulfide (H2S) from S80disproportionation that can diffuse out of the cell to solubilise bulk S80to form soluble polysulfides (Sx2−) and/or S80nanoparticles that readily diffuse across dialysis membranes. The Sulfolobales strain lacking SOR required direct contact to oxidise S80, which could be overcome by the addition of H2S. High concentrations of S80inhibited the growth of both strains. These results implicate alternative strategies to acquire and metabolise sulfur in Sulfolobales and have implications for their distribution and ecology in their hot spring habitats. 
    more » « less
  4. Tringe, Susannah Green (Ed.)
    ABSTRACT Methanotrophic bacteria play a vital role in the biogeochemical carbon cycle due to their unique ability to use CH4as a carbon and energy source. Evidence suggests that some methanotrophs, includingMethylococcus capsulatus, can also use CO2as a carbon source, making these bacteria promising candidates for developing biotechnologies targeting greenhouse gas capture and mitigation. However, a deeper understanding of the dual CH4and CO2metabolism is needed to guide methanotroph strain improvements and realize their industrial utility. In this study, we show thatM. capsulatusexpresses five carbonic anhydrase (CA) isoforms, one α-CA, one γ-CA, and three β-CAs, that play a role in its inorganic carbon metabolism and CO2-dependent growth. The CA isoforms are differentially expressed, and transcription of all isoform genes is induced in response to CO2limitation. CA null mutant strains exhibited markedly impaired growth compared to an isogenic wild-type control, suggesting that the CA isoforms have independent, non-redundant roles inM. capsulatusmetabolism and physiology. Overexpression of some, but not all, CA isoforms improved bacterial growth kinetics and decreased CO2evolution from CH4-consuming cultures. Notably, we developed an engineered methanotrophic biocatalyst overexpressing the native α-CA and β-CA with a 2.5-fold improvement in the conversion of CH4to biomass. Given that product yield is a significant cost driver of methanotroph-based bioprocesses, the engineered strain developed here could improve the economics of CH4biocatalysis, including the production of single-cell protein from natural gas or anaerobic digestion-derived biogas.IMPORTANCEMethanotrophs transform CH4into CO2and multi-carbon compounds, so they play a critical role in the global carbon cycle and are of interest for biotechnology applications. Some methanotrophs, includingMethylococcus capsulatus, can also use CO2as a carbon source, but this dual one-carbon metabolism is incompletely understood. In this study, we show thatM. capsulatuscarbonic anhydrases are critical for this bacterium to optimally utilize CO2. We developed an engineered strain with improved CO2utilization capacity that increased the overall carbon conversion to cell biomass. The improvements to methanotroph-based product yields observed here are expected to reduce costs associated with CH4conversion bioprocesses. 
    more » « less
  5. Roux, Simon (Ed.)
    ABSTRACT A methanogenic archaeon was isolated from bottom sediments in the vicinity of Lake Tanatar II (Altai, Russia), an alkaline soda lake. Here we present the draft genome sequence ofMethanocalculus natronophilussp. strain Z-7105T
    more » « less