skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leveraging Sound Localization to Improve Continuous Speaker Separation
Continuous speaker separation aims to separate overlapping speakers in real-world environments like meetings, but it often falls short in isolating speech segments of a single speaker. This leads to split signals that adversely affect downstream applications such as automatic speech recognition and speaker diarization. Existing solutions like speaker counting have limitations. This paper presents a novel multi-channel approach for continuous speaker separation based on multi-input multi-output (MIMO) complex spectral mapping. This MIMO approach enables robust speaker localization by preserving inter-channel phase relations. Speaker localization as a byproduct of the MIMO separation model is then used to identify single-talker frames and reduce speaker splitting. We demonstrate that this approach achieves superior frame-level sound localization. Systematic experiments on the LibriCSS dataset further show that the proposed approach outperforms other methods, advancing state-of-the-art speaker separation performance.  more » « less
Award ID(s):
2125074
PAR ID:
10552806
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-4485-1
Page Range / eLocation ID:
621 to 625
Subject(s) / Keyword(s):
MIMO complex spectral mapping continuous speaker separation robust speaker localization
Format(s):
Medium: X
Location:
Seoul, Korea, Republic of
Sponsoring Org:
National Science Foundation
More Like this
  1. Current deep learning based multi-channel speaker sepa- ration methods produce a monaural estimate of speaker sig- nals captured by a reference microphone. This work presents a new multi-channel complex spectral mapping approach that simultaneously estimates the real and imaginary spectrograms of all speakers at all microphones. The proposed multi-input multi-output (MIMO) separation model uses a location-based training (LBT) criterion to resolve the permutation ambiguity in talker-independent speaker separation across microphones. Experimental results show that the proposed MIMO separation model outperforms a multi-input single-output (MISO) speaker separation model with monaural estimates. We also combine the MIMO separation model with a beamformer and a MISO speech enhancement model to further improve separation performance. The proposed approach achieves the state-of-the-art speaker separation on the open LibriCSS dataset. 
    more » « less
  2. When dealing with overlapped speech, the performance of automatic speech recognition (ASR) systems substantially degrades as they are designed for single-talker speech. To enhance ASR performance in conversational or meeting environments, continuous speaker separation (CSS) is commonly employed. However, CSS requires a short separation window to avoid many speakers inside the window and sequential grouping of discontinuous speech segments. To address these limitations, we introduce a new multi-channel framework called “speaker separation via neural diarization” (SSND) for meeting environments. Our approach utilizes an end-to-end diarization system to identify the speech activity of each individual speaker. By leveraging estimated speaker boundaries, we generate a sequence of embeddings, which in turn facilitate the assignment of speakers to the outputs of a multi-talker separation model. SSND addresses the permutation ambiguity issue of talker-independent speaker separation during the diarization phase through location-based training, rather than during the separation process. This unique approach allows multiple non-overlapped speakers to be assigned to the same output stream, making it possible to efficiently process long segments—a task impossible with CSS. Additionally, SSND is naturally suitable for speaker-attributed ASR. We evaluate our proposed diarization and separation methods on the open LibriCSS dataset, advancing state-of-the-art diarization and ASR results by a large margin. 
    more » « less
  3. The performance of automatic speech recognition (ASR) systems severely degrades when multi-talker speech overlap occurs. In meeting environments, speech separation is typically performed to improve the robustness of ASR systems. Recently, location-based training (LBT) was proposed as a new training criterion for multi-channel talker-independent speaker separation. Assuming fixed array geometry, LBT outperforms widely-used permutation-invariant training in fully overlapped utterances and matched reverberant conditions. This paper extends LBT to conversational multi-channel speaker separation. We introduce multi-resolution LBT to estimate the complex spectrograms from low to high time and frequency resolutions. With multi-resolution LBT, convolutional kernels are assigned consistently based on speaker locations in physical space. Evaluation results show that multi-resolution LBT consistently outperforms other competitive methods on the recorded LibriCSS corpus. 
    more » « less
  4. This study addresses the problem of single-channel Automatic Speech Recognition of a target speaker within an overlap speech scenario. In the proposed method, the hidden representations in the acoustic model are modulated by speaker auxiliary information to recognize only the desired speaker. Affine transformation layers are inserted into the acoustic model network to integrate speaker information with the acoustic features. The speaker conditioning process allows the acoustic model to perform computation in the context of target-speaker auxiliary information. The proposed speaker conditioning method is a general approach and can be applied to any acoustic model architecture. Here, we employ speaker conditioning on a ResNet acoustic model. Experiments on the WSJ corpus show that the proposed speaker conditioning method is an effective solution to fuse speaker auxiliary information with acoustic features for multi-speaker speech recognition, achieving +9% and +20% relative WER reduction for clean and overlap speech scenarios, respectively, compared to the original ResNet acoustic model baseline. 
    more » « less
  5. The goal of speech separation is to extract multiple speech sources from a single microphone recording. Recently, with the advancement of deep learning and availability of large datasets, speech separation has been formulated as a supervised learning problem. These approaches aim to learn discriminative patterns of speech, speakers, and background noise using a supervised learning algorithm, typically a deep neural network. A long-lasting problem in supervised speech separation is finding the correct label for each separated speech signal, referred to as label permutation ambiguity. Permutation ambiguity refers to the problem of determining the output-label assignment between the separated sources and the available single-speaker speech labels. Finding the best output-label assignment is required for calculation of separation error, which is later used for updating parameters of the model. Recently, Permutation Invariant Training (PIT) has been shown to be a promising solution in handling the label ambiguity problem. However, the overconfident choice of the output-label assignment by PIT results in a sub-optimal trained model. In this work, we propose a probabilistic optimization framework to address the inefficiency of PIT in finding the best output-label assignment. Our proposed method entitled trainable Softminimum PIT is then employed on the same Long-Short Term Memory (LSTM) architecture used in Permutation Invariant Training (PIT) speech separation method. The results of our experiments show that the proposed method outperforms conventional PIT speech separation significantly (p-value < 0.01) by +1dB in Signal to Distortion Ratio (SDR) and +1.5dB in Signal to Interference Ratio (SIR). 
    more » « less