skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-input Multi-output Complex Spectral Mapping for Speaker Separation
Current deep learning based multi-channel speaker sepa- ration methods produce a monaural estimate of speaker sig- nals captured by a reference microphone. This work presents a new multi-channel complex spectral mapping approach that simultaneously estimates the real and imaginary spectrograms of all speakers at all microphones. The proposed multi-input multi-output (MIMO) separation model uses a location-based training (LBT) criterion to resolve the permutation ambiguity in talker-independent speaker separation across microphones. Experimental results show that the proposed MIMO separation model outperforms a multi-input single-output (MISO) speaker separation model with monaural estimates. We also combine the MIMO separation model with a beamformer and a MISO speech enhancement model to further improve separation performance. The proposed approach achieves the state-of-the-art speaker separation on the open LibriCSS dataset.  more » « less
Award ID(s):
2125074
PAR ID:
10552807
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ISCA
Date Published:
Page Range / eLocation ID:
1070 to 1074
Subject(s) / Keyword(s):
MIMO speaker separation multi-channel complex spectral mapping location-based training
Format(s):
Medium: X
Location:
Dublin, Ireland
Sponsoring Org:
National Science Foundation
More Like this
  1. Continuous speaker separation aims to separate overlapping speakers in real-world environments like meetings, but it often falls short in isolating speech segments of a single speaker. This leads to split signals that adversely affect downstream applications such as automatic speech recognition and speaker diarization. Existing solutions like speaker counting have limitations. This paper presents a novel multi-channel approach for continuous speaker separation based on multi-input multi-output (MIMO) complex spectral mapping. This MIMO approach enables robust speaker localization by preserving inter-channel phase relations. Speaker localization as a byproduct of the MIMO separation model is then used to identify single-talker frames and reduce speaker splitting. We demonstrate that this approach achieves superior frame-level sound localization. Systematic experiments on the LibriCSS dataset further show that the proposed approach outperforms other methods, advancing state-of-the-art speaker separation performance. 
    more » « less
  2. When dealing with overlapped speech, the performance of automatic speech recognition (ASR) systems substantially degrades as they are designed for single-talker speech. To enhance ASR performance in conversational or meeting environments, continuous speaker separation (CSS) is commonly employed. However, CSS requires a short separation window to avoid many speakers inside the window and sequential grouping of discontinuous speech segments. To address these limitations, we introduce a new multi-channel framework called “speaker separation via neural diarization” (SSND) for meeting environments. Our approach utilizes an end-to-end diarization system to identify the speech activity of each individual speaker. By leveraging estimated speaker boundaries, we generate a sequence of embeddings, which in turn facilitate the assignment of speakers to the outputs of a multi-talker separation model. SSND addresses the permutation ambiguity issue of talker-independent speaker separation during the diarization phase through location-based training, rather than during the separation process. This unique approach allows multiple non-overlapped speakers to be assigned to the same output stream, making it possible to efficiently process long segments—a task impossible with CSS. Additionally, SSND is naturally suitable for speaker-attributed ASR. We evaluate our proposed diarization and separation methods on the open LibriCSS dataset, advancing state-of-the-art diarization and ASR results by a large margin. 
    more » « less
  3. The performance of automatic speech recognition (ASR) systems severely degrades when multi-talker speech overlap occurs. In meeting environments, speech separation is typically performed to improve the robustness of ASR systems. Recently, location-based training (LBT) was proposed as a new training criterion for multi-channel talker-independent speaker separation. Assuming fixed array geometry, LBT outperforms widely-used permutation-invariant training in fully overlapped utterances and matched reverberant conditions. This paper extends LBT to conversational multi-channel speaker separation. We introduce multi-resolution LBT to estimate the complex spectrograms from low to high time and frequency resolutions. With multi-resolution LBT, convolutional kernels are assigned consistently based on speaker locations in physical space. Evaluation results show that multi-resolution LBT consistently outperforms other competitive methods on the recorded LibriCSS corpus. 
    more » « less
  4. Wireless systems must be resilient to jamming attacks. Existing mitigation methods based on multi-antenna processing require knowledge of the jammer's transmit characteristics that may be difficult to acquire, especially for smart jammers that evade mitigation by transmitting only at specific instants. We propose a novel method to mitigate smart jamming attacks on the massive multi-user multiple-input multiple-output (MU-MIMO) uplink which does not require the jammer to be active at any specific instant. By formulating an optimization problem that unifies jammer estimation and mitigation, channel estimation, and data detection, we exploit that a jammer cannot change its subspace within a coherence interval. Theoretical results for our problem formulation show that its solution is guaranteed to recover the users' data symbols under certain conditions. We develop two efficient iterative algorithms for approximately solving the proposed problem formulation: MAED, a parameter-free algorithm which uses forward-backward splitting with a box symbol prior, and SO-MAED, which replaces the prior of MAED with soft-output symbol estimates that exploit the discrete transmit constellation and which uses deep unfolding to optimize algorithm parameters. We use simulations to demonstrate that the proposed algorithms effectively mitigate a wide range of smart jammers without a priori knowledge about the attack type. 
    more » « less
  5. Illegitimate intelligent reflective surfaces (IRSs) can pose significant physical layer security risks on multi-user multiple-input single-output (MU-MISO) systems. Recently, a DISCO approach has been proposed an illegitimate IRS with random and time-varying reflection coefficients, referred to as a “disco” IRS (DIRS). Such DIRS can attack MU-MISO systems without relying on either jamming power or channel state information (CSI), and classical anti-jamming techniques are in-effective for the DIRS-based fully-passive jammers (DIRS-based FPJs). In this paper, we propose an IRS-enhanced anti-jamming precoder against DIRS-based FPJs that requires only statistical rather than instantaneous CSI of the DIRS-jammed channels. Specifically, a legitimate IRS is introduced to reduce the strength of the DIRS-based jamming relative to the transmit signals at a legitimate user (LU). In addition, the active beamforming at the legitimate access point (AP) is designed to maximize the signal-to-jamming-plus-noise ratios (SJNRs). Numerical results are presented to evaluate the effectiveness of the proposed IRS-enhanced anti-jamming precoder against DIRS-based FPJs. 
    more » « less