skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 2, 2025

Title: Species distribution modeling for disease ecology: A multi-scale case study for schistosomiasis host snails in Brazil
Species distribution models (SDMs) are increasingly popular tools for profiling disease risk in ecology, particularly for infectious diseases of public health importance that include an obligate non-human host in their transmission cycle. SDMs can create high-resolution maps of host distribution across geographical scales, reflecting baseline risk of disease. However, as SDM computational methods have rapidly expanded, there are many outstanding methodological questions. Here we address key questions about SDM application, using schistosomiasis risk in Brazil as a case study. Schistosomiasis is transmitted to humans through contact with the free-living infectious stage ofSchistosomaspp. parasites released from freshwater snails, the parasite’s obligate intermediate hosts. In this study, we compared snail SDM performance across machine learning (ML) approaches (MaxEnt, Random Forest, and Boosted Regression Trees), geographic extents (national, regional, and state), types of presence data (expert-collected and publicly-available), and snail species (Biomphalaria glabrata,B.straminea, andB.tenagophila). We used high-resolution (1km) climate, hydrology, land-use/land-cover (LULC), and soil property data to describe the snails’ ecological niche and evaluated models on multiple criteria. Although all ML approaches produced comparable spatially cross-validated performance metrics, their suitability maps showed major qualitative differences that required validation based on local expert knowledge. Additionally, our findings revealed varying importance of LULC and bioclimatic variables for different snail species at different spatial scales. Finally, we found that models using publicly-available data predicted snail distribution with comparable AUC values to models using expert-collected data. This work serves as an instructional guide to SDM methods that can be applied to a range of vector-borne and zoonotic diseases. In addition, it advances our understanding of the relevant environment and bioclimatic determinants of schistosomiasis risk in Brazil.  more » « less
Award ID(s):
2024383 2011179 2024385
PAR ID:
10553251
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Dar, Kamran Shaukat
Publisher / Repository:
amran Shaukat Dar, The University of Newcastle, AUSTRALIA
Date Published:
Journal Name:
PLOS Global Public Health
Volume:
4
Issue:
8
ISSN:
2767-3375
Page Range / eLocation ID:
e0002224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The development of water management infrastructures, such as dams and canals, are important components of society’s response to feed a growing human population and to fight climate change. Yet, these changes in land use can also increase the transmission risk for waterborne diseases. Transmission risk associated with artificial reservoirs has been extensively documented for schistosomiasis, a parasitic disease of poverty that infects more than 240 million people worldwide. Over 90% of these cases are in sub-Saharan Africa, a region that is being steadily reshaped by climate change. Controlling the parasite’s obligate intermediate host snail is key to reducing transmission of this disease. Using commercial aquaculture to farm marketable species which predate upon these snails in vulnerable regions can have multiple positive effects, including the improved socioeconomic and nutritional health of surrounding communities. Here the authors assessed the viability of using the aquaculture of snail predators to simultaneously control schistosomiasis infection rates while alleviating economic and/or nutritional poverty in endemic regions of sub-Saharan Africa. A PRISMA-based 6-step systematic methodology was used to explore the primary literature using the case study of Côte d’Ivoire and two native species of snail predator to make evidence-based conclusions on the viability of this method for controlling schistosomiasis. This detailed thematic examination of the literature concluded that using specific approaches and species, aquaculture could be effective in reducing economic poverty and chronic malnourishment along with high levels of schistosomiasis infection. More current species-specific aquaculture data and consumer survey data are, however, needed to determine the economic and logistical effectiveness of farming native snail predators in-country. These and other opportunities for future research are highlighted. 
    more » « less
  2. Broadhurst, Mara Jana (Ed.)
    Schistosomiasis is a devastating parasitic disease in which the infectious stage to humans is released by intermediate host snails. The Senegal River Basin (SRB) is a high-risk area for both urogenital and fecal human schistosomiasis and has extensive rice cultivation. However, occupational risk of schistosomiasis to people working in irrigated rice fields is not well established. We performed intermediate host snail surveys from 2022-2023 in rice fields and irrigation canals throughout the SRB. We discovered human schistosome-shedding snails in rice fields and adjacent irrigation canals during the rice growing and non-growing seasons, establishing a clear occupational exposure risk to rice farmers. Relative to the non-growing season, this risk was higher in the rice growing and harvest season when more people are in the rice fields. Rice-fish co-culturing might reduce this occupational risk to rice farmers if local fish species consume enough snail intermediate hosts to reduceSchistosomatransmission. Our predation trials revealed that localHeterotis niloticusandHemichromisspp. fish consumed significant numbers ofBiomphalaria pfeifferiandBulinusspp. snails, and separate trials revealed that these same snail species exhibited only moderate avoidance and refuge use responses to fish chemical cues. These results indicate that there is exposure toSchistosomaparasites in rice fields in the SRB and introducing local fish to rice fields has promise for reducing this exposure as well as providing a protein source to rice farming families. We encourage future studies to more fully explore the benefits of rice-fish co-culturing in the West Africa. 
    more » « less
  3. Background:Schistosomiasis is endemic throughout all regions of Côte d’Ivoire, however, species of the intermediate snail host vary across bioclimatic zones. Hence, a deeper knowledge of the influence of climatic on the life history traits of the intermediate snail host is crucial to understand the environmental determinants of schistosomiasis in a rapidly changing climate. The aim of this study was to run a common garden experiment to assess differences in survival, somatic growth and fecundity of bothBulinus truncatusandBiomphalaria pfeifferisnails collected in three different bioclimatic areas. Methods:A cross-sectional malacological survey was conducted in February 2021 in the south, center and north of Côte d’Ivoire. We sampled two populations ofB. truncatus, the intermediate host snail ofSchistosoma haematobium, from northern and central Côte d’Ivoire, and two populations ofBi.pfeifferi, the intermediate host snail forSchistosoma mansoni, from the southern and central regions. Snails collected at the human-water contact sites were brought in the laboratory where they reproduced. The first generation snails (G1) for each population were reared under the same laboratory conditions, i.e., at 24°C–26°C, during 63 days (9 weeks), to estimate survival, growth, and fecundity. Results:We found that G1Bulinussnails from the north population showed higher survival and growth rates during our study and higher number of eggs at first reproduction, compared to the ones from the central region. ForBi.pfeifferi, no significant difference in survival rate was observed between G1snails from the southern and central populations, whereas those from the south exhibited higher growth rates and higher number of eggs per individual at first reproduction than G1snails from the central population. Conclusion:Our study provides evidence for heterogeneity in snails’ life-history traits in response to temperature among the populations from the three climatic regions. Further experiments from multiple populations are needed to confirm that snails express traits under optimal conditions, can lead to expansion of their geographical range and hence an increase in the risk of schistosomiasis transmission. Transplantation experiments will be required to assess implications of the changing climate on snails persistence, distribution and abundance. 
    more » « less
  4. null (Ed.)
    In recent decades, computer vision has proven remarkably effective in addressing diverse issues in public health, from determining the diagnosis, prognosis, and treatment of diseases in humans to predicting infectious disease outbreaks. Here, we investigate whether convolutional neural networks (CNNs) can also demonstrate effectiveness in classifying the environmental stages of parasites of public health importance and their invertebrate hosts. We used schistosomiasis as a reference model. Schistosomiasis is a debilitating parasitic disease transmitted to humans via snail intermediate hosts. The parasite affects more than 200 million people in tropical and subtropical regions. We trained our CNN, a feed-forward neural network, on a limited dataset of 5,500 images of snails and 5,100 images of cercariae obtained from schistosomiasis transmission sites in the Senegal River Basin, a region in western Africa that is hyper-endemic for the disease. The image set included both images of two snail genera that are relevant to schistosomiasis transmission – that is, Bulinus spp. and Biomphalaria pfeifferi – as well as snail images that are non-component hosts for human schistosomiasis. Cercariae shed from Bi. pfeifferi and Bulinus spp. snails were classified into 11 categories, of which only two, S. haematobium and S. mansoni , are major etiological agents of human schistosomiasis. The algorithms, trained on 80% of the snail and parasite dataset, achieved 99% and 91% accuracy for snail and parasite classification, respectively, when used on the hold-out validation dataset – a performance comparable to that of experienced parasitologists. The promising results of this proof-of-concept study suggests that this CNN model, and potentially similar replicable models, have the potential to support the classification of snails and parasite of medical importance. In remote field settings where machine learning algorithms can be deployed on cost-effective and widely used mobile devices, such as smartphones, these models can be a valuable complement to laboratory identification by trained technicians. Future efforts must be dedicated to increasing dataset sizes for model training and validation, as well as testing these algorithms in diverse transmission settings and geographies. 
    more » « less
  5. Abstract Agricultural expansion is predicted to increase agrochemical use two to fivefold by 2050 to meet food demand. Experimental evidence suggests that agrochemical pollution could increase snails that transmit schistosomiasis, a disease impacting 250 million people, yet most agrochemicals remain unexamined.Here we experimentally created >100 natural wetland communities to quantify the relative effects of fertilizer, six insecticides (chlorpyrifos, terbufos, malathion, λ‐cyhalothrin, permethrin and esfenvalerate), and six herbicides (acetochlor, alachlor, metolachlor, atrazine, propazine and simazine) on two snail genera responsible for 90% of global schistosomiasis cases.We identified four of six insecticides (terbufos, permethrin, chlorpyrifos and esfenvalerate) as high risk for increasing snail biomass by reducing snail predators. Hence, malathion and λ‐cyhalothrin might be useful for improving food production without increasing schistosomiasis. This top‐down effect of insecticides on predators was so strong that the effects of herbicides on schistosomiasis risk were masked in the presence of predators because there were so few snails. In the absence of snail predators, herbicide effects on snails were generally negative by reducing submerged vegetationHydrilla verticillata. The exception was that atrazine and acetochlor significantly increased the biomass of infected snails and total snails respectively.Like insecticides, fertilizer had strong positive effects on snail populations. Fertilizer increased both snail habitat (submerged vegetation) and snail food (periphyton), but of these two pathways, the increases in snail habitat resulted in greater snail population growth. Total snail biomass was positively associated with both infected snail biomass and parasite production and thus human infection risk.Synthesis and applications. Our findings suggest that fertilizers and insecticides generally have consistently higher chances of increasing human schistosomiasis than herbicides in natural communities. Furthermore, our results highlight the need to identify other low risk insecticides, which might help reduce crop pests without increasing snails and thus risk of schistosomiasis. 
    more » « less