skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LOBSTAR: Language Model-based Obstruction Detection for Augmented Reality
In Augmented Reality (AR), improper virtual content placement can obstruct real-world elements, causing confusion and degrading the experience. To address this, we present LOBSTAR (Language model-based OBSTruction detection for Augmented Reality), the first system leveraging a vision language model (VLM) to detect key objects and prevent obstructions in AR. We evaluated LOBSTAR using both real-world and virtual-scene images and developed a mobile app for AR content obstruction detection. Our results demonstrate that LOBSTAR effectively understands scenes and detects obstructive content with well-designed VLM prompts, achieving up to 96% accuracy and a detection latency of 580ms on a mobile app.  more » « less
Award ID(s):
2231975 2046072 2312760
PAR ID:
10553271
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE ISMAR 2024
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In Augmented Reality (AR), virtual content enhances user experience by providing additional information. However, improperly positioned or designed virtual content can be detrimental to task performance, as it can impair users' ability to accurately interpret real-world information. In this paper we examine two types of task-detrimental virtual content: obstruction attacks, in which virtual content prevents users from seeing real-world objects, and information manipulation attacks, in which virtual content interferes with users' ability to accurately interpret real-world information. We provide a mathematical framework to characterize these attacks and create a custom open-source dataset for attack evaluation. To address these attacks, we introduce ViDDAR (Vision language model-based Task-Detrimental content Detector for Augmented Reality), a comprehensive full-reference system that leverages Vision Language Models (VLMs) and advanced deep learning techniques to monitor and evaluate virtual content in AR environments, employing a user-edge-cloud architecture to balance performance with low latency. To the best of our knowledge, ViDDAR is the first system to employ VLMs for detecting task-detrimental content in AR settings. Our evaluation results demonstrate that ViDDAR effectively understands complex scenes and detects task-detrimental content, achieving up to 92.15% obstruction detection accuracy with a detection latency of 533 ms, and an 82.46% information manipulation content detection accuracy with a latency of 9.62 s. 
    more » « less
  2. Augmented Reality (AR) enhances the real world by integrating virtual content, yet ensuring the quality, usability, and safety of AR experiences presents significant challenges. Could Vision-Language Models (VLMs) offer a solution for the automated evaluation of AR-generated scenes? Could Vision-Language Models (VLMs) offer a solution for the automated evaluation of AR-generated scenes? In this study, we evaluate the capabilities of three state-of-the-art commercial VLMs -- GPT, Gemini, and Claude -- in identifying and describing AR scenes. For this purpose, we use DiverseAR, the first AR dataset specifically designed to assess VLMs' ability to analyze virtual content across a wide range of AR scene complexities. Our findings demonstrate that VLMs are generally capable of perceiving and describing AR scenes, achieving a True Positive Rate (TPR) of up to 93% for perception and 71% for description. While they excel at identifying obvious virtual objects, such as a glowing apple, they struggle when faced with seamlessly integrated content, such as a virtual pot with realistic shadows. Our results highlight both the strengths and the limitations of VLMs in understanding AR scenarios. We identify key factors affecting VLM performance, including virtual content placement, rendering quality, and physical plausibility. This study underscores the potential of VLMs as tools for evaluating the quality of AR experiences. 
    more » « less
  3. null (Ed.)
    Mobile Augmented Reality (AR) provides immersive experiences by aligning virtual content (holograms) with a view of the real world. When a user places a hologram it is usually expected that like a real object, it remains in the same place. However, positional errors frequently occur due to inaccurate environment mapping and device localization, to a large extent determined by the properties of natural visual features in the scene. In this demonstration we present SceneIt, the first visual environment rating system for mobile AR based on predictions of hologram positional error magnitude. SceneIt allows users to determine if virtual content placed in their environment will drift noticeably out of position, without requiring them to place that content. It shows that the severity of positional error for a given visual environment is predictable, and that this prediction can be calculated with sufficiently high accuracy and low latency to be useful in mobile AR applications. 
    more » « less
  4. null (Ed.)
    Though virtual reality (VR) has been advanced to certain levels of maturity in recent years, the general public, especially the population of the blind and visually impaired (BVI), still cannot enjoy the benefit provided by VR. Current VR accessibility applications have been developed either on expensive head-mounted displays or with extra accessories and mechanisms, which are either not accessible or inconvenient for BVI individuals. In this paper, we present a mobile VR app that enables BVI users to access a virtual environment on an iPhone in order to build their skills of perception and recognition of the virtual environment and the virtual objects in the environment. The app uses the iPhone on a selfie stick to simulate a long cane in VR, and applies Augmented Reality (AR) techniques to track the iPhone’s real-time poses in an empty space of the real world, which is then synchronized to the long cane in the VR environment. Due to the use of mixed reality (the integration of VR & AR), we call it the Mixed Reality cane (MR Cane), which provides BVI users auditory and vibrotactile feedback whenever the virtual cane comes in contact with objects in VR. Thus, the MR Cane allows BVI individuals to interact with the virtual objects and identify approximate sizes and locations of the objects in the virtual environment. We performed preliminary user studies with blind-folded participants to investigate the effectiveness of the proposed mobile approach and the results indicate that the proposed MR Cane could be effective to help BVI individuals in understanding the interaction with virtual objects and exploring 3D virtual environments. The MR Cane concept can be extended to new applications of navigation, training and entertainment for BVI individuals without more significant efforts. 
    more » « less
  5. Augmented reality (AR) is a technology that integrates 3D virtual objects into the physical world in real-time, while virtual reality (VR) is a technology that immerses users in an interactive 3D virtual environment. The fast development of augmented reality (AR) and virtual reality (VR) technologies has reshaped how people interact with the physical world. This presentation will outline the results from two unique AR and one Web-based VR coastal engineering projects, motivating the next stage in the development of the augmented reality package for coastal students, engineers, and planners. 
    more » « less