skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Active Inference Models of AV Takeovers: Relating Model Parameters to Trust, Situation Awareness, and Fatigue
ObjectiveOur objectives were to assess the efficacy of active inference models for capturing driver takeovers from automated vehicles and to evaluate the links between model parameters and self-reported cognitive fatigue, trust, and situation awareness. BackgroundControl transitions between human drivers and automation pose a substantial safety and performance risk. Models of driver behavior that predict these transitions from data are a critical tool for designing safer, human-centered, systems but current models do not sufficiently account for human factors. Active inference theory is a promising approach to integrate human factors because of its grounding in cognition and translation to a quantitative modeling framework. MethodWe used data from a driving simulation to develop an active inference model of takeover performance. After validating the model’s predictions, we used Bayesian regression with a spike and slab prior to assess substantial correlations between model parameters and self-reported trust, situation awareness, fatigue, and demographic factors. ResultsThe model accurately captured driving takeover times. The regression results showed that increases in cognitive fatigue were associated with increased uncertainty about the need to takeover, attributable to mapping observations to environmental states. Higher situation awareness was correlated with a more precise understanding of the environment and state transitions. Higher trust was associated with increased variance in environmental conditions associated with environmental states. ConclusionThe results align with prior theory on trust and active inference and provide a critical connection between complex driver states and interpretable model parameters. ApplicationThe active inference framework can be used in the testing and validation of automated vehicle technology to calibrate design parameters to ensure safety.  more » « less
Award ID(s):
2310621
PAR ID:
10553291
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Human Factors: The Journal of the Human Factors and Ergonomics Society
ISSN:
0018-7208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transitions of control are an important safety concern for human-automation teams and automated vehicle safety. While trust and situation awareness have been observed to influence transitions of control in automated vehicles, there are few objective measurements, making these concepts difficult to operationalize in increasingly automated decision systems. In this study, we take a step towards quantifying trust by mapping latent driver beliefs extracted from an active inference-factor analysis model of driver behavior and cognitive dynamics to subjective responses to trust questionnaires. Our results show that subjective trust is primarily correlated with model parameters affecting perceptual evidence accumulation rate, and the same parameters are significantly correlated with driver age. 
    more » « less
  2. Objective This study develops a computational model to predict drivers’ response time and understand the underlying cognitive mechanism for freeway exiting takeovers in conditionally automated vehicles (AVs). Background Previous research has modeled drivers’ takeover response time in emergency scenarios that demand a quick response. However, existing models may not be applicable for scheduled, non-time-critical takeovers as drivers take longer to resume control when there is no time pressure. A model of driver response time in non-time-critical takeovers is lacking. Method A computational cognitive model of driver takeover response time is developed based on Queuing Network-Model Human Processor (QN-MHP) architecture. The model quantifies gaze redirection in response to takeover request (ToR), task prioritization, driver situation awareness, and driver trust to address the complexities of drivers' takeover strategies when sufficient time budget exists. Results Experimental data of a preliminary driving simulator study were used to validate the model. The model accounted for 97% of the experimental takeover response time for freeway exiting. Conclusion The current model can successfully predict drivers’ response time for scheduled, non-time-critical freeway exiting takeovers in conditionally AVs. Application This model can be applied to the human-machine interface design with respect to ToR lead time for enhancing safe freeway exiting takeovers in conditionally AVs. It also provides a foundation for future modeling work towards an integrated driver model of freeway exiting takeover performance. 
    more » « less
  3. Driver reliance on automated vehicles (AV) is a critical component of safety particularly during high-risk traffic scenarios. Factors that influence reliance, including trust, situation awareness, fatigue, and demographics, have been independently explored; however, few analyses have investigated predicting AV reliance and compared factors comprehensively. The goals of this study were to develop a random forest (RF) model to predict reliance and to analyze the importance of factors for reliance decisions. We leveraged data from a driving simulation study where participants encountered four traffic events including responding to an illegal vehicle crossing, managing construction zones, stopping at a vandalized stop sign, and a pedestrian detection task. The dataset included reliance decisions and subjective assessments of dispositional trust, situational trust, fatigue, and workload. An RF model fit to the dataset using cross validation achieved an average AUC of 0.81 and accuracy of 0.77 and situational trust emerged as the most influential predictor. 
    more » « less
  4. Automation misuse and acceptance, influenced by trust, environmental conditions, and confidence, have hindered drivers from fully benefiting from partially automated vehicles. This study investigates how driver trust changes with AV reliance, differences in mental and physiological states, and continuous measures’ effectiveness. The takeover drivers reported lower trust than the non-takeover drivers in all scenarios. Nontakeover drivers’ elevated DLPFC activation aligns with trust networks and emotion regulation. The groups also differed in neural activation preand during scenarios with the takeover group showed more PFC, V2V3, and IFC engagement pre-scenario. Gaze revealed the takeover group fixated more on the AV button or dashboard, indicating readiness to take over, while non-takeover drivers focused on the rearview mirror, reflecting situational awareness. HRV responses showed higher physiological arousal in the takeover group pre-scenario. In summary, our multimodal approach reveals takeover behavior is associated with lower trust, cognitive unloading, increased stress, and anticipatory visual attention. 
    more » « less
  5. Adaptive Cruise Control (ACC) has become increasingly popular in modern vehicles, providing enhanced driving safety, comfort, and fuel efficiency. However, predefined ACC settings may not always align with a driver's preferences, leading to discomfort and possible safety hazards. To address this issue, Personalized ACC (P-ACC) has been studied by scholars. However, existing research mostly relies on historical driving data to imitate driver styles, which ignores real-time feedback from the driver. To overcome this limitation, we propose a cloud-vehicle collaborative P-ACC framework, which integrates real-time driver feedback adaptation. This framework consists of offline and online modules. The offline module records the driver's naturalistic car-following trajectory and uses inverse reinforcement learning (IRL) to train the model on the cloud. The online module utilizes the driver's real-time feedback to update the driving gap preference in real-time using Gaussian process regression (GPR). By retraining the model on the cloud with the driver's takeover trajectories, our approach achieves incremental learning to better match the driver's preference. In human-in-the-loop (HuiL) simulation experiments, the proposed framework results in a significant reduction of driver intervention in automatic control systems, up to 70.9%. 
    more » « less