Conditionally automated vehicles require the out-of-the-loop driver to intervene when the system is unable to handle forthcoming situations, such as freeway exiting. The takeover request (ToR) for exiting a freeway can be scheduled in advance. Upon a ToR, the driver needs to gain situation awareness (SA) and resume manual control. This study examined how the ToR lead time affects driver SA for resuming control and when to send the ToR is most appropriate for freeway exiting. A web-based, supervised experiment was conducted with 31 participants. Each participant experienced 12 levels of ToR lead time (6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 45, and 60 s). The results showed positive effects of longer ToR lead times (16–60 s) on driver SA for resuming control to exit from freeways in comparison to shorter ToR lead times (6–14 s), and the effects level off at 16–30 s.
more »
« less
A Computational Cognitive Model of Driver Response Time for Scheduled Freeway Exiting Takeovers in Conditionally Automated Vehicles
Objective This study develops a computational model to predict drivers’ response time and understand the underlying cognitive mechanism for freeway exiting takeovers in conditionally automated vehicles (AVs). Background Previous research has modeled drivers’ takeover response time in emergency scenarios that demand a quick response. However, existing models may not be applicable for scheduled, non-time-critical takeovers as drivers take longer to resume control when there is no time pressure. A model of driver response time in non-time-critical takeovers is lacking. Method A computational cognitive model of driver takeover response time is developed based on Queuing Network-Model Human Processor (QN-MHP) architecture. The model quantifies gaze redirection in response to takeover request (ToR), task prioritization, driver situation awareness, and driver trust to address the complexities of drivers' takeover strategies when sufficient time budget exists. Results Experimental data of a preliminary driving simulator study were used to validate the model. The model accounted for 97% of the experimental takeover response time for freeway exiting. Conclusion The current model can successfully predict drivers’ response time for scheduled, non-time-critical freeway exiting takeovers in conditionally AVs. Application This model can be applied to the human-machine interface design with respect to ToR lead time for enhancing safe freeway exiting takeovers in conditionally AVs. It also provides a foundation for future modeling work towards an integrated driver model of freeway exiting takeover performance.
more »
« less
- Award ID(s):
- 1850002
- PAR ID:
- 10411876
- Date Published:
- Journal Name:
- Human Factors: The Journal of the Human Factors and Ergonomics Society
- ISSN:
- 0018-7208
- Page Range / eLocation ID:
- 001872082211430
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In highly and fully automated vehicles (AV), drivers could divert their attention to non-driving-related activities. Drivers may also take over AVs if they do not trust the way AVs drive in specific driving scenarios. Existing models have been developed to predict drivers’ takeover performance in responding to takeover requests initiated by AVs in semi-AVs. However, few models predicted driver-initiated takeover behavior in highly and fully AVs. The present study develops an attention-based multiple-input Convolutional Neural Network (CNN) to predict drivers’ takeover intention in fully AVs. The results indicated that the developed model successfully predicted takeover intentions of drivers with a precision of 0.982 and an F1-Score of.989, which were found to be substantially higher than other machine learning algorithms. The developed CNN model could be applied in improving the driving algorithms of the AV by considering drivers’ driving styles to reduce drivers’ unnecessary takeover behaviors.more » « less
-
ObjectiveOur objectives were to assess the efficacy of active inference models for capturing driver takeovers from automated vehicles and to evaluate the links between model parameters and self-reported cognitive fatigue, trust, and situation awareness. BackgroundControl transitions between human drivers and automation pose a substantial safety and performance risk. Models of driver behavior that predict these transitions from data are a critical tool for designing safer, human-centered, systems but current models do not sufficiently account for human factors. Active inference theory is a promising approach to integrate human factors because of its grounding in cognition and translation to a quantitative modeling framework. MethodWe used data from a driving simulation to develop an active inference model of takeover performance. After validating the model’s predictions, we used Bayesian regression with a spike and slab prior to assess substantial correlations between model parameters and self-reported trust, situation awareness, fatigue, and demographic factors. ResultsThe model accurately captured driving takeover times. The regression results showed that increases in cognitive fatigue were associated with increased uncertainty about the need to takeover, attributable to mapping observations to environmental states. Higher situation awareness was correlated with a more precise understanding of the environment and state transitions. Higher trust was associated with increased variance in environmental conditions associated with environmental states. ConclusionThe results align with prior theory on trust and active inference and provide a critical connection between complex driver states and interpretable model parameters. ApplicationThe active inference framework can be used in the testing and validation of automated vehicle technology to calibrate design parameters to ensure safety.more » « less
-
Trust calibration poses a significant challenge in the interaction between drivers and automated vehicles (AVs) in the context of human-automation collaboration. To effectively calibrate trust, it becomes crucial to accurately measure drivers’ trust levels in real time, allowing for timely interventions or adjustments in the automated driving. One viable approach involves employing machine learning models and physiological measures to model the dynamic changes in trust. This study introduces a technique that leverages machine learning models to predict drivers’ real-time dynamic trust in conditional AVs using physiological measurements. We conducted the study in a driving simulator where participants were requested to take over control from automated driving in three conditions that included a control condition, a false alarm condition, and a miss condition. Each condition had eight takeover requests (TORs) in different scenarios. Drivers’ physiological measures were recorded during the experiment, including galvanic skin response (GSR), heart rate (HR) indices, and eye-tracking metrics. Using five machine learning models, we found that eXtreme Gradient Boosting (XGBoost) performed the best and was able to predict drivers’ trust in real time with an f1-score of 89.1% compared to a baseline model of K -nearest neighbor classifier of 84.5%. Our findings provide good implications on how to design an in-vehicle trust monitoring system to calibrate drivers’ trust to facilitate interaction between the driver and the AV in real time.more » « less
-
Automation misuse and acceptance, influenced by trust, environmental conditions, and confidence, have hindered drivers from fully benefiting from partially automated vehicles. This study investigates how driver trust changes with AV reliance, differences in mental and physiological states, and continuous measures’ effectiveness. The takeover drivers reported lower trust than the non-takeover drivers in all scenarios. Nontakeover drivers’ elevated DLPFC activation aligns with trust networks and emotion regulation. The groups also differed in neural activation preand during scenarios with the takeover group showed more PFC, V2V3, and IFC engagement pre-scenario. Gaze revealed the takeover group fixated more on the AV button or dashboard, indicating readiness to take over, while non-takeover drivers focused on the rearview mirror, reflecting situational awareness. HRV responses showed higher physiological arousal in the takeover group pre-scenario. In summary, our multimodal approach reveals takeover behavior is associated with lower trust, cognitive unloading, increased stress, and anticipatory visual attention.more » « less
An official website of the United States government

