skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Development of Simulated Dust-Devil-Like Vortices
Abstract In this study, the cause of rotation in simulated dust-devil-like vortices is investigated. The analysis uses a numerical simulation of an initially resting, dry, atmosphere, in which uniform surface heating leads to the development of a growing convective boundary layer (CBL). As soon as convective mixing sets in, regions of weak vertical vorticity develop at the lowest model level. Using forward trajectories, this vorticity is shown to originate from horizontal baroclinic production and simultaneous reorientation into the vertical within the descending branches of the convective cells. The requirement for vertical vorticity production in the downdraft cells is shown to be a nonaxisymmetric horizontal footprint of the downdraft regions. The resulting vertical vorticity is not initially associated with rotation. However, as the CBL matures, like-signed vortex patches merge, the vertical vorticity magnitude increases due to stretching, and deformation in the vortex patch decreases, leading to the development of vortices. The ultimate origin of the vortices is thus initially horizontal vorticity that has been produced baroclinically and that has subsequently been reoriented into the vertical in sinking air. Significance StatementDust devils are concentrated vortices consisting of rapidly rising buoyant air, which may pose a risk to small aircraft and light structures on the ground. Although these vortices are a common occurrence in convective boundary layers, the origin of the vorticity within these vortices has not yet been fully established. The present study uses a numerical simulation of an evolving convective boundary layer and analyzes air parcel trajectories to identify the origin of vertical vorticity at the surface during dust-devil formation. The work contributes an answer to the long-standing question of what causes dust devils to spin.  more » « less
Award ID(s):
2152537
PAR ID:
10553312
Author(s) / Creator(s):
 
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
81
Issue:
11
ISSN:
0022-4928
Format(s):
Medium: X Size: p. 1883-1899
Size(s):
p. 1883-1899
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although much is known about the environmental conditions necessary for supercell tornadogenesis, the near-ground vorticity dynamics during the tornadogenesis process itself are still somewhat poorly understood. For instance, seemingly contradicting mechanisms responsible for large near-ground vertical vorticity can be found in the literature. Broadly, these mechanisms can be sorted into two classes, one being based on upward tilting of mainly baroclinically produced horizontal vorticity in descending air (here called the downdraft mechanism), while in the other the horizontal vorticity vector is abruptly tilted upward practically at the surface by a strong updraft gradient (referred to as the in-and-up mechanism). In this study, full-physics supercell simulations and highly idealized simulations show that both mechanisms play important roles during tornadogenesis. Pretornadic vertical vorticity maxima are generated via the downdraft mechanism, while the dynamics of a fully developed vortex are dominated by the in-and-up mechanism. Consequently, a transition between the two mechanisms occurs during tornadogenesis. This transition is a result of axisymmetrization of the pretornadic vortex patch and intensification via vertical stretching. These processes facilitate the development of the corner flow, which enables production of vertical vorticity by upward tilting of horizontal vorticity practically at the surface, i.e., the in-and-up mechanism. The transition of mechanisms found here suggests that early stages of tornado formation rely on the downdraft mechanism, which is often limited to a small vertical component of baroclinically generated vorticity. Subsequently, a larger supply of horizontal vorticity (produced baroclinically or via surface drag, or even imported from the environment) may be utilized, which marks a considerable change in the vortex dynamics. 
    more » « less
  2. Abstract A simulation of a supercell storm produced for a prior study on tornado predictability is reanalyzed for the purpose of examining the fine-scale details of tornadogenesis. It is found that the formation of a tornado-like vortex in the simulation differs from how such vortices have been understood to form in previous numerical simulations. The main difference between the present simulation and past ones is the inclusion of a turbulent boundary layer in the storm’s environment in the present case, whereas prior simulations have used a laminar boundary layer. The turbulent environment contains significant near-surface vertical vorticity (ζ> 0.03 s−1atz= 7.5 m), organized in the form of longitudinal streaks aligned with the southerly ground-relative winds. Theζstreaks are associated with corrugations in the vertical plane in the predominantly horizontal, westward-pointing environmental vortex lines; the vortex-line corrugations are produced by the vertical drafts associated with coherent turbulent structures aligned with the aforementioned southerly ground-relative winds (longitudinal coherent structures in the surface layer such as these are well known to the boundary layer and turbulence communities). Theζstreaks serve as focal points for tornadogenesis, and may actually facilitate tornadogenesis, given how near-surfaceζin the environment can rapidly amplify when subjected to the strong, persistent convergence beneath a supercell updraft. Significance StatementIn high-resolution computer simulations of supercell storms that include a more realistic, turbulent environment, the means by which tornado-like vortices form differs from the mechanism identified in prior simulations using a less realistic, laminar environment. One possibility is that prior simulations develop intense vortices for the wrong reasons. Another possibility could be that tornadoes form in a wide range of ways in the real atmosphere, even within supercell storms that appear to be similar, and increasingly realistic computer simulations are finally now capturing that diversity. 
    more » « less
  3. Despite their structural differences, supercells and quasi-linear convective systems (QLCS) are both capable of producing severe weather, including tornadoes. Previous research has highlighted multiple potential mechanisms by which horizontal vorticity may be reoriented into the vertical at low levels, but it is not clear in which situation what mechanism dominates. In this study, we use the CM1 model to simulate three different storm modes, each of which developed relatively large near-surface vertical vorticity. Using forward-integrated parcel trajectories, we analyze vorticity budgets and demonstrate that there seems to be a common mechanism for maintaining the near-surface vortices across storm structures. The parcels do not acquire vertical vorticity until they reach the base of the vortices. The vertical vorticity results from vigorous upward tilting and simultaneous vertical stretching. While the parcels analyzed in our simulations do have a history of descent, they do not acquire appreciable vertical vorticity during their descent. Rather, during the analysis period relatively large horizontal vorticity develops as a result of horizontal stretching by the horizontal wind, such that it can be effectively tilted into the vertical. 
    more » « less
  4. Abstract Large eddy simulation (LES) of the Martian convective boundary layer (CBL) with a Mars‐adapted version of the Weather Research and Forecasting model is used to examine the impact of aerosol dust radiative‐dynamical feedbacks on turbulent mixing. The LES is validated against spacecraft observations and prior modeling. To study dust redistribution by coherent dynamical structures within the CBL, two radiatively active dust distribution scenarios are used: one in which the dust distribution remains fixed and another in which dust is freely transported by CBL motions. In the fixed dust scenario, increasing atmospheric dust loading shades the surface from sunlight and weakens convection. However, a competing effect emerges in the free dust scenario, resulting from the lateral concentration of dust in updrafts. The resulting enhancement of dust radiative heating in upwelling plumes both generates horizontal thermal contrasts in the CBL and increases buoyancy production, jointly enhancing CBL convection. We define a dust inhomogeneity index (DII) to quantify how much dust is concentrated in upwelling plumes. If the DII is large enough, the destabilizing effect of lateral heating contrasts can exceed the stabilizing effect of surface shading such that the CBL depth increases with increasing dust optical depth. Thus, under certain combinations of total dust optical depth and the lateral inhomogeneity of dust, a positive feedback exists between dust optical depth, the vigor and depth of CBL mixing, and—to the extent that dust lifting is controlled by the depth and vigor of CBL mixing—the further lifting of dust from the surface. 
    more » « less
  5. Previous work has shown that differential reflectivity ZDR observations from National Weather Service dual-polarization Doppler weather radars (WSR-88Ds) provide accurate estimates of convective boundary layer (CBL) depth when compared with depth estimates from 0000 UTC rawinsonde observations. We extend this work by launching small rawinsondes, called Windsonds, to study ZDR signals throughout the daytime hours. Results show that it can be difficult to identify CBL depth from ZDR alone when biological scatterers are absent. The exploration of other radar variables leads to the use of azimuthal ZDR variance to help in identifying CBL characteristics. A variable that combines both ZDR and azimuthal ZDR variance, called DVar, allows for improved signal identification using the quasi-vertical profile (QVP) method. Furthermore, the QVP channel width is found to be closely tied to the overall entrainment zone (EZ) structure. Results show that the centers and vertical extents of channels of reduced DVar in QVPs correlate well with sounding-observed CBL depth and EZ depth, respectively, across all stages of CBL development and in both clear and cloud-topped CBLs. The QVP approach tends to fail in identifying CBL and EZ depths when the vertical gradient in moisture above the CBL is small. Additionally, we compare the observed EZ depth to various EZ parameterizations and show that the parameterizations generally underestimate EZ depth. We conclude that the ability of WSR-88Ds to sample the CBL should be leveraged to increase our knowledge of CBL properties. Significance Statement: The boundary layer is the lowest layer of Earth’s atmosphere and influences many weather-related phenomena. During the day, sunlight warms the surface and the convective boundary layer (CBL) forms. Even though CBL characteristics are important for accurate weather forecasts, current methods of observing the CBL are severely lacking. This study investigates the potential of using dual-polarization weather radars to expand CBL observations. We also evaluate how well simplified CBL models predict certain CBL characteristics and how they could be improved in the future. 
    more » « less