skip to main content


Title: The Mechanisms Responsible for Large Near-Surface Vertical Vorticity within Simulated Supercells and Quasi-Linear Storms
Despite their structural differences, supercells and quasi-linear convective systems (QLCS) are both capable of producing severe weather, including tornadoes. Previous research has highlighted multiple potential mechanisms by which horizontal vorticity may be reoriented into the vertical at low levels, but it is not clear in which situation what mechanism dominates. In this study, we use the CM1 model to simulate three different storm modes, each of which developed relatively large near-surface vertical vorticity. Using forward-integrated parcel trajectories, we analyze vorticity budgets and demonstrate that there seems to be a common mechanism for maintaining the near-surface vortices across storm structures. The parcels do not acquire vertical vorticity until they reach the base of the vortices. The vertical vorticity results from vigorous upward tilting and simultaneous vertical stretching. While the parcels analyzed in our simulations do have a history of descent, they do not acquire appreciable vertical vorticity during their descent. Rather, during the analysis period relatively large horizontal vorticity develops as a result of horizontal stretching by the horizontal wind, such that it can be effectively tilted into the vertical.  more » « less
Award ID(s):
1651786
NSF-PAR ID:
10186950
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Weather Review
ISSN:
0027-0644
Page Range / eLocation ID:
1 to 34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although much is known about the environmental conditions necessary for supercell tornadogenesis, the near-ground vorticity dynamics during the tornadogenesis process itself are still somewhat poorly understood. For instance, seemingly contradicting mechanisms responsible for large near-ground vertical vorticity can be found in the literature. Broadly, these mechanisms can be sorted into two classes, one being based on upward tilting of mainly baroclinically produced horizontal vorticity in descending air (here called the downdraft mechanism), while in the other the horizontal vorticity vector is abruptly tilted upward practically at the surface by a strong updraft gradient (referred to as the in-and-up mechanism). In this study, full-physics supercell simulations and highly idealized simulations show that both mechanisms play important roles during tornadogenesis. Pretornadic vertical vorticity maxima are generated via the downdraft mechanism, while the dynamics of a fully developed vortex are dominated by the in-and-up mechanism. Consequently, a transition between the two mechanisms occurs during tornadogenesis. This transition is a result of axisymmetrization of the pretornadic vortex patch and intensification via vertical stretching. These processes facilitate the development of the corner flow, which enables production of vertical vorticity by upward tilting of horizontal vorticity practically at the surface, i.e., the in-and-up mechanism. The transition of mechanisms found here suggests that early stages of tornado formation rely on the downdraft mechanism, which is often limited to a small vertical component of baroclinically generated vorticity. Subsequently, a larger supply of horizontal vorticity (produced baroclinically or via surface drag, or even imported from the environment) may be utilized, which marks a considerable change in the vortex dynamics.

     
    more » « less
  2. Abstract

    This study investigates whether quasi-random surface vertical vorticity is sufficient for tornadogenesis when combined with an updraft typical of tornadic supercells. The viability of this pathway could mean that a coherent process to produce well-organized surface vertical vorticity is rather unimportant. Highly idealized simulations are used to establish random noise as a possible seed for the production of tornado-like vortices (TLVs). A number of sensitivities are then examined across the simulations. The most explanatory predictor of whether a TLV will form (and how strong it will become) is the maximal value of initial surface circulation found near the updraft. Perhaps surprisingly, sufficient circulation for tornadogenesis is often present even when the surface vertical vorticity field lacks any obvious organized structure. The other key ingredient for TLV formation is confirmed to be a large vertical gradient in vertical velocity close to the ground (to promote stretching). Overall, it appears that random surface vertical vorticity is indeed sufficient for TLV formation given adequate stretching. However, it is shown that longer-wavelength noise is more likely to be associated with substantial surface circulation (because it is the areal integral of vertical vorticity). Thus, coherent vorticity sources that produce longer-wavelength structures are likely to be the most supportive of tornadogenesis.

     
    more » « less
  3. Abstract

    Surface boundaries in supercells have been suspected of being important in the arrangement and concentration of vorticity for the development and intensification of tornadoes, but there has been little attention given to the effects of the underlying surface roughness on their behavior. This study investigates the impact of surface drag on the structure and evolution of these boundaries, their associated distribution of near-surface vorticity, and tornadogenesis and maintenance. Comparisons between idealized simulations without and with drag introduced in the mature stage of the storm prior to tornadogenesis reveal that the inclusion of surface drag substantially alters the low-level structure, particularly with respect to the number, location, and intensity of surface convergence boundaries. Substantial drag-generated horizontal vorticity induces rotor structures near the surface associated with the convergence boundaries in both the forward and rear flanks of the storm. Stretching of horizontal vorticity and subsequent tilting into the vertical along the convergence boundaries lead to elongated positive vertical vorticity sheets on the ascending branch of the rotors and the opposite on the descending branch. The larger near-surface pressure deficit associated with the faster development of the near-surface cyclone when drag is active creates a downward dynamic vertical pressure gradient force that suppresses vertical growth, leading to a weaker and wider tornado detached from the surrounding convergence boundaries. A conceptual model of the low-level structure of the tornadic supercell is presented that focuses on the contribution of surface drag, with the aim of adding more insight and complexity to previous conceptual models.

    Significance Statement

    Tornado development is sensitive to near-surface processes, including those associated with front-like boundaries between regions of airflow within the parent storm. However, observations and theory are insufficient to understand these phenomena, and numerical simulation remains vital. In our simulations, we find that a change in a parameter that controls how much the near-surface winds are reduced by friction (or drag) can substantially alter the storm behavior and tornado potential. We investigate how surface drag affects the low-level storm structure, the distribution of regions of near-surface rotation, and the development of tornadoes within the simulation. Our results provide insight into the role of surface drag and lead to an improved conceptual model of the near-surface structure of a tornadic storm.

     
    more » « less
  4. null (Ed.)
    Abstract Tropical cyclogenesis (TCG) is a multiscale process that involves interactions between large-scale circulation and small-scale convection. A near-global aquaplanet cloud-resolving model (NGAqua) with 4-km horizontal grid spacing that produces tropical cyclones (TCs) is used to investigate TCG and its predictability. This study analyzes an ensemble of three 20-day NGAqua simulations, with initial white-noise perturbations of low-level humidity. TCs develop spontaneously from the northern edge of the intertropical convergence zone (ITCZ), where large-scale flows and tropical convection provide necessary conditions for barotropic instability. Zonal bands of positive low-level absolute vorticity organize into cyclonic vortices, some of which develop into TCs. A new algorithm is developed to track the cyclonic vortices. A vortex-following framework analysis of the low-level vorticity budget shows that vertical stretching of absolute vorticity due to convective heating contributes positively to the vorticity spinup of the TCs. A case study and composite analyses suggest that sufficient humidity is key for convective development. TCG in these three NGAqua simulations undergoes the same series of interactions. The locations of cyclonic vortices are broadly predetermined by planetary-scale circulation and humidity patterns associated with ITCZ breakdown, which are predictable up to 10 days. Whether and when the cyclonic vortices become TCs depend on the somewhat more random feedback between convection and vorticity. 
    more » « less
  5. Abstract

    Results from a large eddy simulation of a tornadic supercell developing in a horizontally homogeneous environment are presented which clearly illustrate a connection between low‐level mesoyclone development and the development of a streamwise vorticity current (SVC). Although the environment supports tornadic supercells, a strong low‐level mesocyclone (LLM) does not develop until a well‐defined SVC forms in the storm's forward flank. As the streamwise vorticity in the SVC flows southward and is tilted into the storm updraft creating updraft helicity, the LLM strengthens and lowers toward the surface. The SVC also focuses LLM development in a confined storm‐relative position favorable for converging/stretching preexisting vertical vorticity. Tornadogenesis occurs within ∼5 min of the establishment of a strong LLM. These results illustrate a possible mode of internal storm variability that may be an important factor in explaining why some supercells produce tornadoes while others do not in similar favorable environments.

     
    more » « less