skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: BrainWash: A Poisoning Attack to Forget in Continual Learning
Continual learning has gained substantial attention within the deep learning community, offering promising solutions to the challenging problem of sequential learning. Yet, a largely unexplored facet of this paradigm is its susceptibility to adversarial attacks, especially with the aim of inducing forgetting. In this paper, we introduce “Brain-Wash,” a novel data poisoning method tailored to impose forgetting on a continual learner. By adding the Brain-Wash noise to a variety of baselines, we demonstrate how a trained continual learner can be induced to forget its previously learned tasks catastrophically, even when using these continual learning baselines. An important feature of our approach is that the attacker requires no access to previous tasks' data and is armed merely with the model's current parameters and the data belonging to the most recent task. Our extensive experiments highlight the efficacy of Brain Wash, showcasing degradation in performance across various regularization and memory replay-based continual learning methods. Our code is available here: https://github.com/mint-vuIBrainwash  more » « less
Award ID(s):
2339898
PAR ID:
10553576
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-5300-6
Page Range / eLocation ID:
24057 to 24066
Format(s):
Medium: X
Location:
Seattle, WA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep learning models are prone to forgetting information learned in the past when trained on new data. This problem becomes even more pronounced in the context of federated learning (FL), where data is decentralized and subject to independent changes for each user. Continual Learning (CL) studies this so-called \textit{catastrophic forgetting} phenomenon primarily in centralized settings, where the learner has direct access to the complete training dataset. However, applying CL techniques to FL is not straightforward due to privacy concerns and resource limitations. This paper presents a framework for federated class incremental learning that utilizes a generative model to synthesize samples from past distributions instead of storing part of past data. Then, clients can leverage the generative model to mitigate catastrophic forgetting locally. The generative model is trained on the server using data-free methods at the end of each task without requesting data from clients. Therefore, it reduces the risk of data leakage as opposed to training it on the client's private data. We demonstrate significant improvements for the CIFAR-100 dataset compared to existing baselines. 
    more » « less
  2. null (Ed.)
    In continual learning, a system learns from non-stationary data streams or batches without catastrophic forgetting. While this problem has been heavily studied in supervised image classification and reinforcement learning, continual learning in neural networks designed for abstract reasoning has not yet been studied. Here, we study continual learning of analogical reasoning. Analogical reasoning tests such as Raven's Progressive Matrices (RPMs) are commonly used to measure non-verbal abstract reasoning in humans, and recently offline neural networks for the RPM problem have been proposed. In this paper, we establish experimental baselines, protocols, and forward and backward transfer metrics to evaluate continual learners on RPMs. We employ experience replay to mitigate catastrophic forgetting. Prior work using replay for image classification tasks has found that selectively choosing the samples to replay offers little, if any, benefit over random selection. In contrast, we find that selective replay can significantly outperform random selection for the RPM task. 
    more » « less
  3. Abstract Catastrophic forgetting remains an outstanding challenge in continual learning. Recently, methods inspired by the brain, such as continual representation learning and memory replay, have been used to combat catastrophic forgetting. Associative learning (retaining associations between inputs and outputs, even after good representations are learned) plays an important function in the brain; however, its role in continual learning has not been carefully studied. Here, we identified a two-layer neural circuit in the fruit fly olfactory system that performs continual associative learning between odors and their associated valences. In the first layer, inputs (odors) are encoded using sparse, high-dimensional representations, which reduces memory interference by activating nonoverlapping populations of neurons for different odors. In the second layer, only the synapses between odor-activated neurons and the odor’s associated output neuron are modified during learning; the rest of the weights are frozen to prevent unrelated memories from being overwritten. We prove theoretically that these two perceptron-like layers help reduce catastrophic forgetting compared to the original perceptron algorithm, under continual learning. We then show empirically on benchmark data sets that this simple and lightweight architecture outperforms other popular neural-inspired algorithms when also using a two-layer feedforward architecture. Overall, fruit flies evolved an efficient continual associative learning algorithm, and circuit mechanisms from neuroscience can be translated to improve machine computation. 
    more » « less
  4. Existing work in continual learning (CL) focuses on mitigating catastrophic forgetting, i.e., model performance deterioration on past tasks when learning a new task. However, the training efficiency of a CL system is under-investigated, which limits the real-world application of CL systems under resource-limited scenarios. In this work, we propose a novel framework called Sparse Continual Learning(SparCL), which is the first study that leverages sparsity to enable cost-effective continual learning on edge devices. SparCL achieves both training acceleration and accuracy preservation through the synergy of three aspects: weight sparsity, data efficiency, and gradient sparsity. Specifically, we propose task-aware dynamic masking (TDM) to learn a sparse network throughout the entire CL process, dynamic data removal (DDR) to remove less informative training data, and dynamic gradient masking (DGM) to sparsify the gradient updates. Each of them not only improves efficiency, but also further mitigates catastrophic forgetting. SparCL consistently improves the training efficiency of existing state-of-the-art (SOTA) CL methods by at most 23X less training FLOPs, and, surprisingly, further improves the SOTA accuracy by at most 1.7%. SparCL also outperforms competitive baselines obtained from adapting SOTA sparse training methods to the CL setting in both efficiency and accuracy. We also evaluate the effectiveness of SparCL on a real mobile phone, further indicating the practical potential of our method. 
    more » « less
  5. Federated continual learning is a decentralized approach that enables edge devices to continuously learn new data, mitigating catastrophic forgetting while collaboratively training a global model. However, existing state-of-the-art approaches in federated continual learning focus primarily on learning continuously to classify discrete sets of images, leaving dense regression tasks such as depth estimation unaddressed. Furthermore, autonomous agents that use depth estimation to explore dynamic indoor environments inevitably encounter spatial and temporal shifts in data distributions. These shifts trigger a phenomenon called spatio-temporal catastrophic forgetting, a more complex and challenging form of catastrophic forgetting. In this paper, we address the fundamental research question: “Can we mitigate spatiotemporal catastrophic forgetting in federated continual learning for depth estimation in dynamic indoor environments?”. To address this question, we propose Local Online and Continual Adaptation (LOCA), the first approach to address spatio-temporal catastrophic forgetting in dynamic indoor environments. LOCA relies on two key algorithmic innovations: online batch skipping and continual local aggregation. Our extensive experiments show that LOCA mitigates spatio-temporal catastrophic forgetting and improves global model performance, while running on-device up to 3.35× faster and consuming 3.13× less energy compared to state-of-the-art. Thus, LOCA lays the groundwork for scalable autonomous systems that adapt in real time to learn private and dynamic indoor environments. 
    more » « less