skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of Time History-Based Metrics for Validating Nonlinear Deformation Analyses of Liquefiable Geosystems
Non-linear dynamic analyses (NDAs) are widely used in engineering practice to evaluate the seismic performance of geotechnical structures affected by liquefaction or cyclic softening. The quality of results from an NDA study depends on several technical and nontechnical factors. Validation, wherein a numerical prediction is compared to its physical counterpart, can assess the ability of an NDA to capture the various metrics of the response and potentially provide guidance toward improving the prediction. This study investigates select methodologies and validation metrics commonly used in signal processing problems to assess their effectiveness in capturing discrepancies between experimental and simulation results for a specific response of interest. Three simple problems are initially evaluated to analyze the metrics’ capabilities and identify necessary modifications. Then, the metrics are applied to nine sets of experimental and simulation time series, focusing on one response of interest (pore water pressure). It is found that cross-correlation successfully captures the lag in the initiation of liquefaction triggering, while Russell’s error metric captures magnitude and phase discrepancies.  more » « less
Award ID(s):
2047838
PAR ID:
10553633
Author(s) / Creator(s):
;
Publisher / Repository:
American Society of Civil Engineers
Date Published:
ISBN:
9780784485316
Page Range / eLocation ID:
310 to 320
Format(s):
Medium: X
Location:
Vancouver, British Columbia, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. Non-linear dynamic analyses (NDAs) can capture the complex dynamic behavior of the soil using properly calibrated constitutive models. However, the quality of results from an NDA tudy hinges on several factors. Validation, which involves comparing numerical results to physical measurements, can assess the ability of an NDA to capture key responses through selected metrics. This study presents the application of a time history-based validation metric for evaluating the performance of numerical simulations. The centrifuge experiment conducted at UC Davis under the LEAP-2017 project, along with simulations performed using the PM4Sand constitutive model, provides the experimental and numerical data, respectively. The validation of the simulations against experimental measurements using the proposed metric is followed by a discussion on the potential experimental and numerical sources causing the quantified discrepancies. Conclusions are drawn on the effectiveness of the investigated metrics in facilitating the performance evaluation of numerical simulations and enhancing their reliability. 
    more » « less
  2. null; null; null (Ed.)
    Constitutive modeling of granular materials such as sands, non-plastic silts, and gravels has been significantly advanced in the past three decades. Several new constitutive models have been proposed and calibrated to simulate the results of various laboratory element tests. Due to this progress and owing to the surge of interest in geotechnical engineering community to use well-documented constitutive models in major geotechnical projects, a more thorough evaluation of these models is necessary. Performance of the current models should be particularly evaluated in the simulation of boundary value problems where stress/strain paths are much more complex than the element tests performed in laboratory. Such validation efforts will be an important step towards the use of these models in practice. This paper presents the results of an extensive validation study aimed at assessing the capabilities and limitations of a two-surface plasticity model for sands in two selected boundary value problems, i.e. lateral spreading of mildly sloping liquefiable grounds. The results of a large number of centrifuge tests conducted during the course of four consecutive international projects known as Liquefaction Experiments and Analysis Project (LEAP) are used in this validation study. The capabilities and limitations of the two-surface plasticity model, initially calibrated against element tests, will be carefully assessed by comparing the numerical simulations with the results of the centrifuge tests from recent LEAP projects. 
    more » « less
  3. This paper discusses three aspects of nonlinear dynamic analysis (NDA) practices that are important for evaluating the seismic performance of geotechnical structures affected by liquefaction or cyclic softening: (1) selection and calibration of constitutive models, (2) comparison of NDA results using two or more constitutive models, and (3) documentation. The ability of the selected constitutive models and calibration protocols to approximate the loading responses important to the system being analyzed is one of several technical factors affecting the quality of results from an NDA. Comparisons of single element simulations against empirical data for a broad range of loading conditions are essential for evaluating this factor. Critical comparisons of NDAs using two or more constitutive models are valuable for evaluating modeling uncertainty for specific systems and for identifying modeling limitations that need improvement. The utility of an NDA study depends on the documentation being sufficiently thorough to facilitate effective reviews, advance best practices, and support future reexaminations of a system's seismic performance. 
    more » « less
  4. A series of centrifuge tests of a sloping ground were conducted at Rensselaer Polytechnic Institute (RPI). These tests were used to monitor and assess the soil response, in terms of generated accelerations, excess pore water pressure (EPWP) and associated lateral spreading, as a function of variations in the dynamic input motion and soil relative density. This series of tests are part of the Liquefaction Experiments and Analysis Projects (LEAP-2017), an international effort to assess the repeatability and reproducibility of centrifuge experimental results, and verify and validate soil liquefaction numerical tools using the experimental data. 
    more » « less
  5. The stress-strain behavior of Ottawa F65 sand is investigated through an extensive series of constant volume stress-controlled cyclic direct simple shear (CDSS) tests performed at different densities, overburden pressures, and static shear stresses prior to cyclic shearing to quantify their effects on the cyclic strength of Ottawa F65 sand. Results of the CDSS tests are used in the constitutive model calibration exercise for the Liquefaction Experiments and Analysis Project (LEAP-2022). The collected database of CDSS tests is used to develop an Artificial Neural Network (ANN) model capable of predicting Ottawa F65 liquefaction strength for a specified set of relative density, overburden pressure, static shear stress ratio, and cyclic shear stress ratio. After training, validation and testing, the ANN model is further assessed using blind prediction of the liquefaction strength in new CDSS tests for a relative density and overburden stress that are not available in the training dataset. CDSS tests under similar conditions were then carried out in the laboratory for validation of the ANN model. The comparisons of the predictions with the experimental results have demonstrated the ANN model predictive capability for liquefaction strength and its sensitivity to changes in relative density, overburden stress and cyclic stress ratio. 
    more » « less