skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient radiative cooling of low-cost BaSO 4 paint-paper dual-layer thin films
Abstract Many materials have been explored for the purpose of creating structures with high radiative cooling potential, such as nanocellulose-based structures and nanoparticle-based coatings, which have been reported with environmentally friendly attributes and high solar reflectance in current literature. They each have their own advantages and disadvantages in practice. It is worth noting that nanocellulose-based structures have an absorption peak in the UV wavelengths, which results in a lower total solar reflectance and, consequently, reduce radiative cooling capabilities. However, the interwoven-fiber structure of cellulose gives high mechanical strength, which promotes its application in different scenarios. The application of nanoplatelet-based coatings is limited due to the need for high volume of nanoparticles to reach their signature high solar reflectance. This requirement weakens the polymer matrix and results in more brittle structures. This work proposes a dual-layer system, comprising of a cellulose-based substrate as the bottom layer and a thin nanoparticle-based radiative cooling paint as the top layer, where both radiative cooling potential and mechanical strength can be maximized. Experimental and theoretical studies are conducted to investigate the relationship between thickness and reflectance in the top coating layer with a consistent thickness of the bottom layer. The saturation point is identified in this relationship and used to determine the optimal thickness for the top-layer to maximize material use efficiency. With the use of cotton paper painted with a 125 μm BaSO4-based layer, the cooling performance is enhanced to be 149.6 W/m2achieved by the improved total solar reflectance from 80 % to 93 %.  more » « less
Award ID(s):
2102645
PAR ID:
10553725
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nanophotonics
Date Published:
Journal Name:
Nanophotonics
Volume:
13
Issue:
5
ISSN:
2192-8614
Page Range / eLocation ID:
639 to 648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Renewable nanocellulose materials received increased attention owing to their small dimensions, high specific surface area, high mechanical characteristics, biocompatibility, and compostability. Nanocellulose coatings are among many interesting applications of these materials to functionalize different by composition and structure surfaces, including plastics, polymer coatings, and textiles with broader applications from food packaging to smart textiles. Variations in porosity and thickness of nanocellulose coatings are used to adjust a load of functional molecules and particles into the coatings, their permeability, and filtration properties. Mechanical stability of nanocellulose coatings in a wet and dry state are critical characteristics for many applications. In this work, nanofibrillated and nanocrystalline cellulose coatings deposited on the surface of polymer films and textiles made of cellulose, polyester, and nylon are studied using atomic force microscopy, ellipsometry, and T-peel adhesion tests. Methods to improve coatings’ adhesion and stability using physical and chemical cross-linking with added polymers and polycarboxylic acids are analyzed in this study. The paper reports on the effect of the substrate structure and ability of nanocellulose particles to intercalate into the substrate on the coating adhesion. 
    more » « less
  2. We present a radiative cooling material capable of enhancing albedo while reducing ground surface temperatures beneath fielded bifacial solar panels. Electrospinning a layer of polyacrylonitrile nanofibers, or nanoPAN, onto a polymer-coated silver mirror yields a total solar reflectance of 99 %, an albedo of 0.96, and a thermal emittance of 0.80. The combination of high albedo and high emittance is enabled by wavelength-selective scattering induced by the hierarchical morphology of nanoPAN, which includes both thin fibers and bead-like structures. During outdoor testing, the material outperforms the radiative cooling power of a state-of-the-art control by ∼20 W/m2and boosts the photocurrent produced by a commercial silicon cell by up to 6.4 mA/cm2compared to sand. These experiments validate essential characteristics of a high-albedo radiative-cooling reflector with promising potential applications in thermal and light management of fielded bifacial panels. 
    more » « less
  3. Abstract Passive daytime radiative cooling (PDRC) can realize electricity‐free cooling by reflecting sunlight and emitting heat to the cold space. Current PDRC designs often involve costly vacuum processing or a large quantity of harmful organic solvents. Aqueous and paint‐like processing is cost‐effective and environmentally benign, thereby highly attractive for green manufacturing of PDRC coatings. However, common polymers explored in PDRC are difficult to disperse in water, let alone forming porous structures for efficient cooling. Here, a simple “bottom‐up” ball milling approach to create uniform microassembly of poly(vinylidene fluoride‐co‐hexafluoropropene) nanoparticles is reported. The micro‐ and nanopores among secondary particles and primary particles substantially enhance light scattering and results in excellent PDRC performance. A high solar reflectance of 0.94 and high emittance of 0.97 are achieved, making the coating 3.3 and 1.7 °C cooler than commercial white paints and the ambient temperature, under a high solar flux of ≈1100 W m−2. More importantly, the volatile organic compound content in the aqueous paint is only 71 g L−1. This satisfies the general regulatory requirements, which are critical to sustainability and practical applications. 
    more » « less
  4. Passive radiative cooling materials are widely recognized as attractive innovations for reducing emissions and expanding life-saving cooling access. Despite immense research attention, the adoption of such technologies is limited largely due to a lack of scalability and cost compatibility with market needs. While paint and coating-based approaches offer a more sensible solution, many demonstrations suffer from issues such as a low solar reflectance performance or a lack of material sustainability due to the use of harmful solvents. In this work, we demonstrate a passive radiative cooling paint which achieves an extremely high solar reflectance value of 98% using a completely water-based formulation. Material sustainability is promoted by incorporating size-dispersed calcium phosphate biomaterials, which offer broadband solar reflectance, as well as a self-crosslinking water-based binder, providing water resistance and durability without introducing harmful materials. Common industry pigments are integrated within the binder for comparison, illustrating the benefit of finely-tuned particle size distributions for broadband solar reflectance, even in low-refractive-index materials such as calcium phosphates. With scalability, outdoor durability, and eco-friendly materials, this demonstrated paint offers a practical passive radiative cooling approach without exacerbating other environmental issues. 
    more » « less
  5. Porous materials possess numerous useful functions because of their high surface area and ability to modulate the transport of heat, mass, fluids, and electromagnetic waves. Unlike highly ordered structures, disordered porous structures offer the advantages of ease of fabrication and high fault tolerance. Bicontinuous interfacially jammed emulsion gels (bijels) are kinetically trapped disordered biphasic materials that can be converted to porous materials with tunable features. Current methods of bijel fabrication result in domains that are micrometers or larger, and non-uniform in size, limiting their surface area, mechanical strength, and interaction with electromagnetic waves. In this work, scalable synthesis of bijels with uniform and sub-micrometer domains is achieved via a two-step solvent removal process. The resulting bijels are characterized quantitatively to verify the uniformity and sub-micrometer scale of the domains. Moreover, these bijels have structures that resemble the microstructure of the scale of the white beetle Cyphochilus. We find that such bijel films with relatively small thicknesses (<150 μm) exhibit strong solar reflectance as well as high brightness and whiteness in the visible range. Considering their scalability in manufacturing, we believe that VIPS-STRIPS bijels have great potential in large-scale applications including passive cooling, solar cells, and light emitting diodes (LEDs). 
    more » « less