skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High albedo daytime radiative cooling for enhanced bifacial PV performance
We present a radiative cooling material capable of enhancing albedo while reducing ground surface temperatures beneath fielded bifacial solar panels. Electrospinning a layer of polyacrylonitrile nanofibers, or nanoPAN, onto a polymer-coated silver mirror yields a total solar reflectance of 99 %, an albedo of 0.96, and a thermal emittance of 0.80. The combination of high albedo and high emittance is enabled by wavelength-selective scattering induced by the hierarchical morphology of nanoPAN, which includes both thin fibers and bead-like structures. During outdoor testing, the material outperforms the radiative cooling power of a state-of-the-art control by ∼20 W/m2and boosts the photocurrent produced by a commercial silicon cell by up to 6.4 mA/cm2compared to sand. These experiments validate essential characteristics of a high-albedo radiative-cooling reflector with promising potential applications in thermal and light management of fielded bifacial panels.  more » « less
Award ID(s):
2144662
PAR ID:
10483720
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
De Gruyter
Date Published:
Journal Name:
Nanophotonics
Volume:
0
Issue:
0
ISSN:
2192-8606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Heat dissipation is a severe barrier for ever‐smaller and more functionalized electronics, necessitating the continuous development of accessible, cost‐effective, and highly efficient cooling solutions. Metals, such as silver and copper, with high thermal conductivity, can efficiently remove heat. However, ultralow infrared thermal emittance (<0.03) severely restricts their radiative heat dissipation capability. Here, a solution‐processed chemical oxidation reaction is demonstrated for transfiguring “infrared‐white” metals (high infrared thermal reflectance) to “infrared‐black” metametals (high infrared thermal emittance). Enabled by strong molecular vibrations of metal‐oxygen chemical bonds, this strategy via assembling nanostructured metal oxide thin films on metal surface yields infrared spectrum manipulation, high and omnidirectional thermal emittance (0.94 from 0 to 60°) with excellent thermomechanical stability. The thin film of metal oxides with relatively high thermal conductivity does not hinder heat dissipation. “Infrared‐black” meta‐aluminum shows a temperature drop of 21.3 °C corresponding to a cooling efficiency of 17.2% enhancement than the pristine aluminum alloy under a heating power of 2418 W m−2. This surface photon‐engineered strategy is compatible with other metals, such as copper and steel, and it broadens its implementation for accelerating heat dissipation. 
    more » « less
  2. Passive daytime radiative cooling (PDRC) is a promising energy-saving cooling method to cool objects without energy consumption. Although numerous PDRC materials and structures have been proposed to achieve sub-ambient temperatures, the technique faces unprecedented challenges brought on by complicated and expensive fabrication. Herein, inspired by traditional Chinese oil-paper umbrellas, we develop a self-cleaning and self-cooling oil-foam composite (OFC) made of recycled polystyrene foam and tung oil to simultaneously achieve efficient passive radiative cooling and enhanced thermal dissipation of objects. The OFCs show high solar reflectance (0.90) and high mid-infrared thermal emittance (0.89) during the atmospheric transparent window, contributing to a sub-ambient temperature drop of ∼5.4 °C and cooling power of 86 W m −2 under direct solar irradiance. Additionally, the worldwide market of recycled packaging plastics can provide low-cost raw materials, further eliminating the release of plastics into the environment. The OFC offers an energy-efficient, cost-effective and environmentally friendly candidate for building cooling applications and provides a value-added path for plastic recycling. 
    more » « less
  3. Abstract Passive daytime radiative cooling (PDRC) can realize electricity‐free cooling by reflecting sunlight and emitting heat to the cold space. Current PDRC designs often involve costly vacuum processing or a large quantity of harmful organic solvents. Aqueous and paint‐like processing is cost‐effective and environmentally benign, thereby highly attractive for green manufacturing of PDRC coatings. However, common polymers explored in PDRC are difficult to disperse in water, let alone forming porous structures for efficient cooling. Here, a simple “bottom‐up” ball milling approach to create uniform microassembly of poly(vinylidene fluoride‐co‐hexafluoropropene) nanoparticles is reported. The micro‐ and nanopores among secondary particles and primary particles substantially enhance light scattering and results in excellent PDRC performance. A high solar reflectance of 0.94 and high emittance of 0.97 are achieved, making the coating 3.3 and 1.7 °C cooler than commercial white paints and the ambient temperature, under a high solar flux of ≈1100 W m−2. More importantly, the volatile organic compound content in the aqueous paint is only 71 g L−1. This satisfies the general regulatory requirements, which are critical to sustainability and practical applications. 
    more » « less
  4. Abstract Many materials have been explored for the purpose of creating structures with high radiative cooling potential, such as nanocellulose-based structures and nanoparticle-based coatings, which have been reported with environmentally friendly attributes and high solar reflectance in current literature. They each have their own advantages and disadvantages in practice. It is worth noting that nanocellulose-based structures have an absorption peak in the UV wavelengths, which results in a lower total solar reflectance and, consequently, reduce radiative cooling capabilities. However, the interwoven-fiber structure of cellulose gives high mechanical strength, which promotes its application in different scenarios. The application of nanoplatelet-based coatings is limited due to the need for high volume of nanoparticles to reach their signature high solar reflectance. This requirement weakens the polymer matrix and results in more brittle structures. This work proposes a dual-layer system, comprising of a cellulose-based substrate as the bottom layer and a thin nanoparticle-based radiative cooling paint as the top layer, where both radiative cooling potential and mechanical strength can be maximized. Experimental and theoretical studies are conducted to investigate the relationship between thickness and reflectance in the top coating layer with a consistent thickness of the bottom layer. The saturation point is identified in this relationship and used to determine the optimal thickness for the top-layer to maximize material use efficiency. With the use of cotton paper painted with a 125 μm BaSO4-based layer, the cooling performance is enhanced to be 149.6 W/m2achieved by the improved total solar reflectance from 80 % to 93 %. 
    more » « less
  5. Abstract The building sector accounts for 36% of energy consumption and 39% of energy-related greenhouse-gas emissions. Integrating bifacial photovoltaic solar cells in buildings could significantly reduce energy consumption and related greenhouse gas emissions. Bifacial solar cells should be flexible, bifacially balanced for electricity production, and perform reasonably well under weak-light conditions. Using rigorous optoelectronic simulation software and the differential evolution algorithm, we optimized symmetric/asymmetric bifacial CIGS solar cells with either (i) homogeneous or (ii) graded-bandgap photon-absorbing layers and a flexible central contact layer of aluminum-doped zinc oxide to harvest light outdoors as well as indoors. Indoor light was modeled as a fraction of the standard sunlight. Also, we computed the weak-light responses of the CIGS solar cells using LED illumination of different light intensities. The optimal bifacial CIGS solar cell with graded-bandgap photon-absorbing layers is predicted to perform with 18%–29% efficiency under 0.01–1.0-Sun illumination; furthermore, efficiencies of 26.08% and 28.30% under weak LED light illumination of 0.0964 mW cm−2and 0.22 mW cm−2intensities, respectively, are predicted. 
    more » « less