Abstract Mechanically deformable polymeric semiconductors are a key material for fabricating flexible organic thin‐film transistors (FOTFTs)—the building block of electronic circuits and wearable electronic devices. However, for many π‐conjugated polymers achieving mechanical deformability and efficient charge transport remains challenging. Here the effects of polymer backbone bending stiffness and film microstructure on mechanical flexibility and charge transport are investigated via experimental and computational methods for a series of electron‐transporting naphthalene diimide (NDI) polymers having differing extents of π‐conjugation. The results show that replacing increasing amounts of the π‐conjugated comonomer dithienylvinylene (TVT) with the π‐nonconjugated comonomer dithienylethane (TET) in the backbone of the fully π‐conjugated polymeric semiconductor, PNDI‐TVT100(yielding polymeric series PNDI‐TVTx, 100 ≥x≥ 0), lowers backbone rigidity, degree of texturing, and π–π stacking interactions between NDI moieties. Importantly, this comonomer substitution increases the mechanical robustness of PNDI‐TVTxwhile retaining efficient charge transport. Thus, reducing the TVT content of PNDI‐TVTxsuppresses film crack formation and dramatically stabilizes the field‐effect electron mobility upon bending (e.g., 2 mm over 2000 bending cycles). This work provides a route to tune π–π stacking in π‐conjugated polymers while simultaneously promoting mechanical flexibility and retaining good carrier mobility in FOTFTs.
more »
« less
Achieving Closed‐Loop Recycling of a Semi‐Conjugated Polymer Through the Incorporation of Ester Linkers Along the Backbone
Abstract Design strategies to achieve degradation and ideally closed‐loop recycling of organic semiconductors have attracted great interest in order to minimize the electronic waste (E‐waste). In this work, three ester‐incorporated monomers were synthesized by the names of Thiophene‐Ester‐Ethylene‐Thiophene (TEET), Thiophene‐Ester‐Methylene‐Thiophene (TEMT), and Thiophene‐Ester‐Thiophene (TET), which were co‐polymerized via Stille polycondensation with a benzodithiophene (BnDT) π‐conjugated unit to yield a series of ester‐incorporated polymers: PBnDT‐TEET, PBnDT‐TEMT, and PBnDT‐TET. While the ester‐only linker can maintain some extended conjugation in PBnDT‐TET, the other two ester linkers having conjugation breaking units result in isolated conjugated segments in PBnDT‐TEET and PBnDT‐TEMT, evidenced by UV‐Vis and CV results. This yields an improved photovoltaic performance of PBnDT‐TET compared to PBnDT‐TEET. While all three polymers can depolymerize under methanolysis, the alternating co‐polymer PBnDT‐TEET demonstrates the highest recyclability potential with a single dimethyl ester‐functionalized product with an excellent 92 % isolated yield, which can then be repolymerized to reobtain PBnDT‐TEET with a 36 % yield. This work provides a framework towards achieving recyclable organic semiconductors to reduce E‐waste. Although the incorporation of ester linkers allowed for closed‐loop recycling, the low solar cell efficiency of PBnDT‐TEET highlights the significant challenge in achieving both recycling and high device performance.
more »
« less
- Award ID(s):
- 2134664
- PAR ID:
- 10553763
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemSusChem
- Volume:
- 18
- Issue:
- 3
- ISSN:
- 1864-5631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Clean and renewable energy development is becoming frontier research for future energy resources, as renewable energy offers sustainable and environmentally friendly alternatives to non-renewable sources such as fossil fuels. Among various renewable energy sources, tremendous progress has been made in converting solar energy to electric energy by developing efficient organic photovoltaics. Organic photovoltaic materials comprising conjugated polymers (CP) with narrow optical energy gaps are promising candidates for developing sustainable sources due to their potentially lower manufacturing costs. Organic semiconductor materials with a high electron affinity are required for many optoelectronic applications. We have designed a series of organic semiconductors comprised of cyclopentadithiophene as a donor and thiadiazoloquinoxaline (TQ) as an acceptor, varying the π-conjugation and TQ-derivatives. We have employed density functional theory (DFT) and time-dependent DFT (TDDFT) to evaluate the designed CP’s optoelectronic properties, such as optical energy gap, dipole moment, and absorption spectra. Our DFT/TDDFT result shows that the energy gap of CPs is lowered and redshifted in the absorption spectra if there is no insertion of conjugation units such as thiophene and selenophene between donor and acceptor. In addition, selenophene shows relatively better redshift behavior compared to thiophene. Our work also provides rational insight into designing donor/acceptor-based CPs for organic solar cells.more » « less
-
Abstract Synthetic helical polymers form compact, ordered, and inherently chiral structures, enabling their uses in biomimetic applications as well as catalysis. A challenge in using synthetic helical polymers, however, is their tendency to be sensitive to pH and the presence of nucleophiles, Lewis‐acids, or metal ions. We report a strategy to overcome these shortcomings by adapting catalyst‐transfer polymerization, a living chain‐growth polymerization typically used to access linear conjugated polymers, for the synthesis of helical poly(thiophene)s. We demonstrate that the helical poly(thiophene)s can be synthesized with a single helicity, incorporated into block copolymers, and functionalized at the chain‐ends, enabling further conjugation and functionalization. The helical poly(thiophene)s are stable to a variety of conditions, providing benefits over other helical polymers which contain sensitive imine or carbonyl‐based functional groups. We anticipate that the ability to access homochiral, heterotelechelic helical conjugated polymers and copolymers will enable new uses of these materials in optoelectronics as well as in applications for mimicking biomacromolecules and other polymers with precisely defined sequences.more » « less
-
Abstract Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐film mechanical properties are investigated for diketopyrrolopyrrole (DPP)‐based conjugated polymers with varying numbers of isolated thiophene moieties and sizes of fused thiophene rings in the polymer backbone. Interestingly, it is found that these thiophene units act as an antiplasticizer, where more isolated thiophene rings or bigger fused rings result in an increased glass transition temperature (Tg) of the polymer backbone, and consequently elastic modulus of the respective DPP polymers. Detailed morphological studies suggests that all samples show similar semicrystalline morphology. This antiplasticization effect also exists inpara‐azaquinodimethane‐based conjugated polymers, indicating that this can be a general trend for various conjugated polymer systems. Using the knowledge gained above, a new DPP‐based polymer with increased alkyl side chain density through attaching alky chains to the thiophene unit is engineered. The new DPP polymer demonstrates a record lowTg, and 50% lower elastic modulus than a reference polymer without side‐chain decorated on the thiophene unit. This work provides a general design rule for making low‐Tgconjugated polymers for stretchable electronics.more » « less
-
Abstract The extension of conjugated organoboranes from monomeric species to oligomers, macrocycles, and polymers offers access to a plethora of fascinating new materials. The p–π* conjugation between empty orbitals on boron and the conjugated linkers not only affects the electronic structure and optical properties, but also enables mutual interactions between electron‐deficient boron centers. The unique properties of these electron‐deficient π‐conjugated systems are exploited in highly luminescent materials, organic optoelectronic devices, and sensing applications.more » « less
An official website of the United States government
