This content will become publicly available on November 1, 2025
Objects moving in water or stationary objects in streams create a vortex wake. An underwater robot encountering the wake created by another body experiences disturbance forces and moments. These disturbances can be associated with the disturbance velocity field and the bodies creating them. Essentially, the vortex wakes encode information about the objects and the flow conditions. Underwater robots that often function with constrained sensing capabilities can benefit from extracting this information from vortex wakes. Many species of fish do exactly this, by sensing flow features using their lateral lines as part of their multimodal sensing capabilities. Besides the necessary sensing hardware, a more important aspect of sensing is related to the algorithms needed to extract the relevant information about the flow. This paper advances a framework for such an algorithm using the setting of a pitching hydrofoil in the wake of a thin plate (obstacle). Using time series pressure measurements on the surface of the hydrofoil and the angular velocity of the hydrofoil, a Koopman operator is constructed that propagates the time series forward in time. Multiple approaches are used to extract dynamic information from the Koopman operator to estimate the plate position and are bench marked against a state-of-the-art convolutional neural network (CNN) applied directly to the time series. We find that using the Koopman operator for feature extraction improves the estimation accuracy compared to the CNN for the same purpose, enabling “blind” sensing using the lateral line.
more » « less- Award ID(s):
- 2021612
- PAR ID:
- 10553767
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Dynamic Systems, Measurement, and Control
- Volume:
- 146
- Issue:
- 6
- ISSN:
- 0022-0434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Objects moving in water or stationary objects in streams create a vortex wake. Such vortex wakes encode information about the objects and the flow conditions. Underwater robots that often function with constrained sensing capabilities can benefit from extracting this information from vortex wakes. Many species of fish do exactly this, by sensing flow features using their lateral lines as part of their multimodal sensing. To replicate such capabilities in robots, significant research has been devoted to developing artificial lateral line sensors that can be placed on the surface of a robot to detect pressure and velocity gradients. We advance an alternative view of embodied sensing in this paper; the kinematics of a swimmer’s body in response to the hydrodynamic forcing by the vortex wake can encode information about the vortex wake. Here we show that using artificial neural networks that take the angular velocity of the body as input, fish-like swimmers can be trained to label vortex wakes which are hydrodynamic signatures of other moving bodies and thus acquire a capability to ‘blindly’ identify them.more » « less
-
Motivated by the need for compact descriptions of the evolution of non-classical wakes behind yawed wind turbines, we develop an analytical model to predict the shape of curled wakes. Interest in such modelling arises due to the potential of wake steering as a strategy for mitigating power reduction and unsteady loading of downstream turbines in wind farms. We first estimate the distribution of the shed vorticity at the wake edge due to both yaw offset and rotating blades. By considering the wake edge as an ideally thin vortex sheet, we describe its evolution in time moving with the flow. Vortex sheet equations are solved using a power series expansion method, and an approximate solution for the wake shape is obtained. The vortex sheet time evolution is then mapped into a spatial evolution by using a convection velocity. Apart from the wake shape, the lateral deflection of the wake including ground effects is modelled. Our results show that there exists a universal solution for the shape of curled wakes if suitable dimensionless variables are employed. For the case of turbulent boundary layer inflow, the decay of vortex sheet circulation due to turbulent diffusion is included. Finally, we modify the Gaussian wake model by incorporating the predicted shape and deflection of the curled wake, so that we can calculate the wake profiles behind yawed turbines. Model predictions are validated against large-eddy simulations and laboratory experiments for turbines with various operating conditions.more » « less
-
Many species of fish gather in dense collectives or schools where there are significant flow interactions from their shed wakes. Commonly, these swimmers shed a classic reverse von Kármán wake, however, schooling eels produce a bifurcated wake topology with two vortex rings shed per oscillation cycle. To examine the schooling interactions of a hydrofoil with a bifurcated wake topology, we present tomographic particle image velocimetry (tomo PIV) measurements of the flow interactions and direct force measurements of the performance of two low-aspect-ratio hydrofoils ( A R = 0.5 ) in an in-line and a staggered arrangement. Surprisingly, when the leader and follower are interacting in either arrangement there are only minor alterations to the flowfields beyond the superposition of the flowfields produced by the isolated leader and follower. Motivated by this finding, Garrick’s linear theory, a linear unsteady hydrofoil theory based on a potential flow assumption, was adapted to predict the lift and thrust performance of the follower. Here, the follower hydrofoil interacting with the leader’s wake is considered as the superposition of an isolated pitching foil with a time-varying cross-stream velocity derived from the wake flow measurements of the isolated leader. Linear theory predictions accurately capture the time-averaged lift force and some of the major peaks in thrust derived from the follower interacting with the leader’s wake in a staggered arrangement. The thrust peaks that are not predicted by linear theory are likely driven by spatial variations in the flowfield acting on the follower or nonlinear flow interactions; neither of which are accounted for in the simple theory. This suggests that unsteady potential flow theory that does account for spatial variations in the flowfield acting on a hydrofoil can provide a relatively simple framework to understand and model the flow interactions that occur in schooling fish. Additionally, schooling eels can derive thrust and efficiency increases of 63-80% in either a in-line or a staggered arrangement where the follower is between two branched momentum jets or with one momentum jet branch directly impinging on it, respectively.more » « less
-
This paper describes the numerical study of oscillating circular cylinders with rigid splitter plates of different lengths. These geometries may be used as disturbance generators for the study of unsteady airfoils and wings operating in highly vortical flowfields. It has been shown that cylinders undergoing forced rotational oscillations at their natural shedding frequency can produce wakes with minimal deviation in cycle-to-cycle vortex strength and position. Adding a splitter plate allows these deviations to be reduced even further. We present cases for oscillating cylinders having splitter-plate lengths up to [Formula: see text] at a Reynolds number of 7600. Frequencies are maintained at the natural shedding frequency, and a rotational amplitude of 45 deg is used. Numerical simulations are performed using a two-dimensional unsteady Reynolds-averaged Navier–Stokes (RANS) code. Results are presented in the form of vorticity contours and cycle-averaged velocity profiles, as well as the dominant frequencies of cylinder lift force and downstream velocity angles. The results show that splitter-plate lengths shorter than [Formula: see text] adversely affect the ability to generate a coherent vortex wake due to shear layer roll-up near the trailing edge of the plate. Splitter plates longer than [Formula: see text] produced a reverse von Kármán wake with consistent cycle-to-cycle vortex shedding.
-
The interaction between upstream flow disturbance generators and downstream aeroelastic structures has been the focus of several recent studies at North Carolina State University. Building on this work, which observed the modulation of limit cycle oscillations (LCOs) in the presence of vortex wakes, this study examines the design and validation of a novel disturbance generator consisting of an oscillating cylinder with an attached splitter plate. Analytical design of the bluff body was performed based on specific flow conditions which produced LCO annihilation in previous studies. Computational fluid dynamics simulations and experimental wind tunnel tests were used to validate the ability of the new disturbance generator to produce the desired wake region. Future work will see the implementation of this novel design in conjunction with aeroelastic structures in an effort to modulate and control LCOs, including the excitation and annihilation thereof.more » « less