skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Multi‐Segment Complexity of the 2024 MW ${M}_{W}$ 7.5 Noto Peninsula Earthquake Governs Tsunami Generation
Abstract The 1 January 2024, moment magnitude 7.5 Noto Peninsula earthquake ruptured in complex ways, challenging analysis of its tsunami generation. We present tsunami models informed by a 6‐subevent centroid moment tensor (CMT) model obtained through Bayesian inversion of teleseismic and strong motion data. We identify two distinct bilateral rupture episodes. Initial, onshore rupture toward the southwest is followed by delayed re‐nucleation at the hypocenter, likely aided by fault weakening, causing significant seafloor uplift to the northeast. We construct a complex multi‐fault uplift model, validated against geodetic observations, that aligns with known fault system geometries and is critical in modeling the observed tsunami. The simulations can explain tsunami wave amplitude, timing, and polarity of the leading wave, which are crucial for tsunami early warning. Upon comparison with alternative source models and analysis of 2000 multi‐CMT ensemble solutions, we highlight the importance of incorporating complex source effects for realistic tsunami simulations.  more » « less
Award ID(s):
2121568 2311206 2311208
PAR ID:
10553857
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The January 1st, 2024, moment magnitude (Mw) 7.5 Noto Peninsula earthquake ruptured in complex ways, challenging timely analysis of the tsunami generation. We present rapid and accurate tsunami models informed by a 6-subevent centroid moment tensor (CMT) model that we obtain by inverting teleseismic and strong motion data and validation against geodetic observations. We identify two distinct bilateral rupture episodes, including six subevents and a re-nucleation episode at its hypocenter 20 seconds after its initiation, likely aided by fault weakening. We construct a complex uplift model that aligns with known fault system geometries and is critical in modeling the observed tsunami. Our tsunami simulation can explain wave amplitude, timing, and polarity of the leading wave, which are crucial for tsunami early warning. Analyzing a 2000 multi-CMT solution ensemble and comparing to alternative rapid source models, we highlight the importance of incorporating complex source effects for realistic tsunami simulations. 
    more » « less
  2. Abstract The Mediterranean Hellenic Arc subduction zone (HASZ) has generated several 8 earthquakes and tsunamis. Seismic‐probabilistic tsunami hazard assessment typically utilizes uniform or stochastic earthquake models, which may not represent dynamic rupture and tsunami generation complexity. We present an ensemble of ten 3D dynamic rupture earthquake scenarios for the HASZ, utilizing a realistic slab geometry. Our simplest models use uniform along‐arc pre‐stresses or a single circular initial stress asperity. We then introduce progressively more complex models varying initial shear stress along‐arc, multiple asperities based on scale‐dependent critical slip weakening distance, and a most complex model blending all aforementioned heterogeneities. Thereby, regional initial conditions are constrained without relying on detailed geodetic locking models. Varying epicentral locations in the simplest, homogeneous model leads to different rupture speeds and moment magnitudes. We observe dynamic fault slip penetrating the shallow slip‐strengthening region and affecting seafloor uplift. Off‐fault plastic deformation can double vertical seafloor uplift. A single‐asperity model generates a 8 scenario resembling the 1303 Crete earthquake. Using along‐strike varying initial stresses results in 8.0–8.5 dynamic rupture scenarios with diverse slip rates and uplift patterns. The model with the most heterogeneous initial conditions yields a 7.5 scenario. Dynamic rupture complexity in prestress and fracture energy tends to lower earthquake magnitude but enhances tsunamigenic displacements. Our results offer insights into the dynamics of potential large Hellenic Arc megathrust earthquakes and may inform future physics‐based joint seismic and tsunami hazard assessments. 
    more » « less
  3. The Mediterranean Hellenic Arc subduction zone (HASZ) has generatedseveral Mw>=8 earthquakes and tsunamis.Seismic-probabilistic tsunami hazard assessment typically utilizesuniform or stochastic earthquake models, which may not represent dynamicrupture and tsunami generation complexity. We present an ensemble of ten3D dynamic rupture earthquake scenarios for the HASZ, utilizing arealistic slab geometry. Our simplest models use uniform along-arcpre-stresses or a single circular initial stress asperity. We thenintroduce progressively more complex models varying initial shear stressalong-arc, multiple asperities based on scale-dependent critical slipweakening distance, and a most complex model blending all aforementionedheterogeneities. Thereby, regional initial conditions are constrainedwithout relying on detailed geodetic locking models. Varying hypocenterlocations in the simplest, homogeneous model leads to different rupturespeeds and moment magnitudes. We observe dynamic fault slip penetratingthe shallow slip-strengthening region and affecting seafloor uplift.Off-fault plastic deformation can double vertical seafloor uplift. Asingle-asperity model generates a Mw~8 scenarioresembling the 1303 Crete earthquake. Using along-strike varying initialstresses results in Mw~8.0-8.5 dynamic rupture scenarioswith diverse slip rates and uplift patterns. The model with the mostheterogeneous initial conditions yields a Mw~7.5scenario. Dynamic rupture complexity in prestress and fracture energytends to lower earthquake magnitude but enhances tsunamigenicdisplacements. Our results offer insights into the dynamics of potentiallarge Hellenic Arc megathrust earthquakes and may inform futurephysics-based joint seismic and tsunami hazard assessments. 
    more » « less
  4. Tsunamigenic megathrust earthquakes along the Cascadia subduction zone present a major hazard concern. We can better prepare to model the earthquake source in a rapid manner by imbuing fault geometry constraints based on prior knowledge and by evaluating the capabilities of using existing GNSS sensors. Near-field GNSS waveforms have shown promise in providing rapid coarse finite-fault model approximations of the earthquake rupture that can improve tsunami modeling and response time. In this study, we explore the performance of GNSS derived finite-fault inversions and tsunami forecasting predictions in Cascadia that highlights the impact and potential of geodetic techniques and data in operational earthquake and tsunami monitoring. We utilized 1300 Cascadia earthquake simulations (FakeQuakes) that provide realistic (M7.5-9.3) rupture scenarios to assess how feasibly finite-fault models can be obtained in a rapid earthquake early warning and tsunami response context. A series of fault models with rectangular dislocation patches spanning the Cascadia megathrust area is added to the GFAST inversion algorithm to calculate slip for each earthquake scenario. Another method used to constrain the finite-fault geometry is from the GNSS-derived CMT fault plane solution. For the Cascadia region, we show that fault discretization using two rectangular segments approximating the megathrust portion of the subduction zone leads to improvements in modeling magnitude, fault slip, tsunami amplitude, and inundation. In relation to tsunami forecasting capabilities, we compare coastal amplitude predictions spanning from Vancouver Island (Canada) to Northern California (USA). Generally, the coastal amplitudes derived using fault parameters from the CMT solutions show an overestimation bias compared to amplitudes derived from the fixed slab model. We also see improved prediction values of the run-up height and maximum amplitude at 10 tide gauge stations using the fixed slab model as well. 
    more » « less
  5. Tsunamigenic earthquakes pose considerable risks, both economically and socially, yet earthquake and tsunami hazard assessments are typically conducted separately. Earthquakes associated with unexpected tsunamis, such as the 2018 Mw  7.5 strike-slip Sulawesi earthquake, emphasize the need to study the tsunami potential of active submarine faults in different tectonic settings. Here, we investigate physics-based scenarios combining simulations of 3D earthquake dynamic rupture and seismic wave propagation with tsunami generation and propagation. We present time-dependent modeling of one-way linked and 3D fully coupled earthquakes and tsunamis for the ∼ 100 km long Húsavík–Flatey Fault Zone (HFFZ) in North Iceland. Our analysis shows that the HFFZ has the potential to generate sizable tsunamis. The six dynamic rupture models sourcing our tsunami scenarios vary regarding hypocenter location, spatiotemporal evolution, fault slip, and fault structure complexity but coincide with historical earthquake magnitudes. Earthquake dynamic rupture scenarios on a less segmented fault system, particularly with a hypocenter location in the eastern part of the fault system, have a larger potential for local tsunami generation. Here, dynamically evolving large shallow fault slip (∼ 8 m), near-surface rake rotation (± 20∘), and significant coseismic vertical displacements of the local bathymetry (± 1 m) facilitate strike-slip faulting tsunami generation. We model tsunami crest to trough differences (total wave heights) of up to ∼ 0.9 m near the town Ólafsfjörður. In contrast, none of our scenarios endanger the town of Akureyri, which is shielded by multiple reflections within the narrow Eyjafjörður bay and by Hrísey island. We compare the modeled one-way linked tsunami waveforms with simulation results using a 3D fully coupled approach. We find good agreement in the tsunami arrival times and location of maximum tsunami heights. While seismic waves result in transient motions of the sea surface and affect the ocean response, they do not appear to contribute to tsunami generation. However, complex source effects arise in the fully coupled simulations, such as tsunami dispersion effects and the complex superposition of seismic and acoustic waves within the shallow continental shelf of North Iceland. We find that the vertical velocity amplitudes of near-source acoustic waves are unexpectedly high – larger than those corresponding to the actual tsunami – which may serve as a rapid indicator of surface dynamic rupture. Our results have important implications for understanding the tsunamigenic potential of strike-slip fault systems worldwide and the coseismic acoustic wave excitation during tsunami generation and may help to inform future tsunami early warning systems. 
    more » « less