Abundant proxy records suggest a profound reorganization of the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM, ~21,000 y ago), with the North Atlantic Deep Water (NADW) shoaling significantly relative to the present-day (PD) and forming Glacial North Atlantic Intermediate Water (GNAIW). However, almost all previous observational and modeling studies have focused on the zonal mean two-dimensional AMOC feature, while recent progress in the understanding of modern AMOC reveals a more complicated three-dimensional structure, with NADW penetrating from the subpolar North Atlantic to lower latitude through different pathways. Here, combining231Pa/230Th reconstructions and model simulations, we uncover a significant change in the three-dimensional structure of the glacial AMOC. Specifically, the mid-latitude eastern pathway (EP), located east of the Mid-Atlantic Ridge and transporting about half of the PD NADW from the subpolar gyre to the subtropical gyre, experienced substantial intensification during the LGM. A greater portion of the GNAIW was transported in the eastern basin during the LGM compared to NADW at the PD, resulting in opposite231Pa/230Th changes between eastern and western basins during the LGM. Furthermore, in contrast to the wind-steering mechanism of EP at PD, the intensified LGM EP was caused primarily by the rim current forced by the basin-scale open-ocean convection over the subpolar North Atlantic. Our results underscore the importance of accounting for three-dimensional oceanographic changes to achieve more accurate reconstructions of past AMOC. 
                        more » 
                        « less   
                    
                            
                            Deep Circulation Variability through the Eastern Subpolar North Atlantic
                        
                    
    
            Abstract The export of the North Atlantic Deep Water (NADW) from the subpolar North Atlantic is known to affect the variability in the lower limb of the Atlantic meridional overturning circulation (AMOC). However, the respective impact from the transport in the upper NADW (UNADW) and lower NADW (LNADW) layers, and from the various transport branches through the boundary and interior flows, on the subpolar overturning variability remains elusive. To address this, the spatiotemporal characteristics of the circulation of NADW throughout the eastern subpolar basins are examined, mainly based on the 2014–20 observations from the transatlantic Overturning in the Subpolar North Atlantic Program (OSNAP) array. It reveals that the time-mean transport within the overturning’s lower limb across the eastern subpolar gyre [−13.0 ± 0.5 Sv (1 Sv ≡ 106m3s−1)] mostly occurs in the LNADW layer (−9.4 Sv or 72% of the mean), while the lower limb variability is mainly concentrated in the UNADW layer (57% of the total variance). This analysis further demonstrates a dominant role in the lower limb variability by coherent intraseasonal changes across the region that result from a basinwide barotropic response to changing wind fields. By comparison, there is just a weak seasonal cycle in the flows along the western boundary of the basins, in response to the surface buoyancy-induced water mass transformation. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10553982
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 37
- Issue:
- 23
- ISSN:
- 0894-8755
- Format(s):
- Medium: X Size: p. 6221-6234
- Size(s):
- p. 6221-6234
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Because new observations have revealed that the Labrador Sea is not the primary source for waters in the lower limb of the Atlantic Meridional Overturning Circulation (AMOC) during the Overturning in the Subpolar North Atlantic Programme (OSNAP) period, it seems timely to re‐examine the traditional interpretation of pathways and property variability for the AMOC lower limb from the subpolar gyre to 26.5°N. In order to better understand these connections, Lagrangian experiments were conducted within an eddy‐rich ocean model to track upper North Atlantic Deep Water (uNADW), defined by density, between the OSNAP line and 26.5°N as well as within the Labrador Sea. The experiments reveal that 77% of uNADW at 26.5°N is directly advected from the OSNAP West section along the boundary current and interior pathways west of the Mid‐Atlantic Ridge. More precisely, the Labrador Sea is a main gateway for uNADW sourced from the Irminger Sea, while particles connecting OSNAP East to 26.5°N are exclusively advected from the Iceland Basin and Rockall Trough along the eastern flank of the Mid‐Atlantic Ridge. Although the pathways between OSNAP West and 26.5°N are only associated with a net formation of 1.1 Sv into the uNADW layer, they show large density changes within the layer. Similarly, as the particles transit through the Labrador Sea, they undergo substantial freshening and cooling that contributes to further densification within the uNADW layer.more » « less
- 
            Abstract The Iceland Scotland Overflow Water (ISOW) plume supplies approximately a third of the production of North Atlantic Deep Water and is a key component of the meridional overturning circulation (MOC). The Overturning in the Subpolar North Atlantic Program (OSNAP) mooring array in the Iceland Basin has provided high‐resolution observations of ISOW from 2014 to 2020. The ISOW plume forms a deep western boundary current along the eastern flank of Reykjanes Ridge, and its total transport varies by greater than a factor of two on intra‐seasonal timescales. EOF analysis of moored current meter records reveal two dominant modes of velocity variance. The first mode explains roughly 20% of the variance and shows a bottom intensified structure concentrated in the rift valley that runs parallel to the ridge axis. The transport anomaly reconstructed from the first mode explains nearly 80% of the total ISOW plume transport variance. The second mode accounts for 15% of velocity variance, but only 5% of the transport variance. The geostrophically estimated transport (2.9 Sv) recovers only 70% of the total ISOW transport along the ridge flank estimated from the direct current meter observations (4.2 Sv), implying a significant ageostrophic component of ISOW mean transport and variability. Ageostrophic flow is strongly linked to the leading mode of velocity variability within the rift valley. The ISOW transport variability along the upper and middle part of the ridge is further shown to correlate with changes in the strength of deep MOC limb across the basin‐wide OSNAP array.more » « less
- 
            Abstract This study quantifies the overturning circulation in the Arctic Ocean and associated heat transport (HT) and freshwater transport (FWT) from October 2004 to May 2010 based on hydrographic and current observations. Our main data source consists of 1165 moored instrument records in the four Arctic main gateways: Davis Strait, Fram Strait, Bering Strait, and the Barents Sea Opening. We employ a box inverse model to obtain mass and salt balanced velocity fields, which are then used to quantify the overturning circulation as well as HT and FWT. Atlantic Water is transformed into two different water masses in the Arctic Ocean at a rate of 4.3 Sv (1 Sv ≡ 106m3s−1). Combined with 0.7 Sv of Bering Strait inflow and 0.15 Sv of surface freshwater flux, 2.2 Sv flows back to the south through Davis Strait and western Fram Strait as the upper limb of the overturning circulation, and 2.9 Sv returns southward through Fram Strait as the lower limb of the overturning. The Arctic Ocean imports heat of 180 ± 57 TW (long-term mean ± standard deviation of monthly means) with a methodological uncertainty of 20 TW and exports FW of 156 ± 91 mSv with an uncertainty of 61 mSv over the 6 years with a potential offset of ∼30 mSv. The HT and FWT have large seasonalities ranging between 110 and 260 TW (maximum in winter) and between 40 and 260 mSv (maximum in winter), respectively. The obtained overturning circulation and associated HT and FWT presented here are vital information to better understand the northern extent of the Atlantic meridional overturning circulation.more » « less
- 
            Abstract The Atlantic Ocean overturning circulation is important to the climate system because it carries heat and carbon northward, and from the surface to the deep ocean. The high salinity of the subpolar North Atlantic is a prerequisite for overturning circulation, and strong freshening could herald a slowdown. We show that the eastern subpolar North Atlantic underwent extreme freshening during 2012 to 2016, with a magnitude never seen before in 120 years of measurements. The cause was unusual winter wind patterns driving major changes in ocean circulation, including slowing of the North Atlantic Current and diversion of Arctic freshwater from the western boundary into the eastern basins. We find that wind-driven routing of Arctic-origin freshwater intimately links conditions on the North West Atlantic shelf and slope region with the eastern subpolar basins. This reveals the importance of atmospheric forcing of intra-basin circulation in determining the salinity of the subpolar North Atlantic.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
