- Award ID(s):
- 2125899
- PAR ID:
- 10554161
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- arXiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- Colorado School of Mines
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Quantum many-body systems away from equilibrium host a rich variety of exotic phenomena that are forbidden by equilibrium thermodynamics. A prominent example is that of discrete time crystals 1–8 , in which time-translational symmetry is spontaneously broken in periodically driven systems. Pioneering experiments have observed signatures of time crystalline phases with trapped ions 9,10 , solid-state spin systems 11–15 , ultracold atoms 16,17 and superconducting qubits 18–20 . Here we report the observation of a distinct type of non-equilibrium state of matter, Floquet symmetry-protected topological phases, which are implemented through digital quantum simulation with an array of programmable superconducting qubits. We observe robust long-lived temporal correlations and subharmonic temporal response for the edge spins over up to 40 driving cycles using a circuit of depth exceeding 240 and acting on 26 qubits. We demonstrate that the subharmonic response is independent of the initial state, and experimentally map out a phase boundary between the Floquet symmetry-protected topological and thermal phases. Our results establish a versatile digital simulation approach to exploring exotic non-equilibrium phases of matter with current noisy intermediate-scale quantum processors 21 .more » « less
-
Topologically ordered phases in 2 + 1 dimensions are generally characterized by three mutually related features: fractionalized (anyonic) excitations, topological entanglement entropy, and robust ground state degeneracy that does not require symmetry protection or spontaneous symmetry breaking. Such a degeneracy is known as topological degeneracy and can be usually seen under the periodic boundary condition regardless of the choice of the system sizes L1 and L2 in each direction. In this work, we introduce a family of extensions of the Kitaev toric code to N level spins (N ≥ 2). The model realizes topologically ordered phases or symmetry-protected topological phases depending on the parameters in the model. The most remarkable feature of topologically ordered phases is that the ground state may be unique, depending on L1 and L2, despite that the translation symmetry of the model remains unbroken. Nonetheless, the topological entanglement entropy takes the nontrivial value. We argue that this behavior originates from the nontrivial action of translations permuting anyon species.more » « less
-
Abstract Symmetry-protected topological phases of matter have challenged our understanding of condensed matter systems and harbour exotic phenomena promising to address major technological challenges. Considerable understanding of these phases of matter has been gained recently by considering additional protecting symmetries, different types of quasiparticles, and systems out of equilibrium. Here, we show that symmetries could be enforced not just on full Hamiltonians, but also on their components. We construct a large class of previously unidentified multiplicative topological phases of matter characterized by tensor product Hilbert spaces similar to the Fock space of multiple particles. To demonstrate our methods, we introduce multiplicative topological phases of matter based on the foundational Hopf and Chern insulator phases, the multiplicative Hopf and Chern insulators (MHI and MCI), respectively. The MHI shows the distinctive properties of the parent phases as well as non-trivial topology of a child phase. We also comment on a similar structure in topological superconductors as these multiplicative phases are protected in part by particle-hole symmetry. The MCI phase realizes topologically protected gapless states that do not extend from the valence bands to the conduction bands for open boundary conditions, which respects to the symmetries protecting topological phase. The band connectivity discovered in MCI could serve as a blueprint for potential multiplicative topology with exotic properties.
-
Abstract Unconventional superconductors have Cooper pairs with lower symmetries than in conventional superconductors. In most unconventional superconductors, the additional symmetry breaking occurs in relation to typical ingredients such as strongly correlated Fermi liquid phases, magnetic fluctuations, or strong spin-orbit coupling in noncentrosymmetric structures. In this article, we show that the time-reversal symmetry breaking in the superconductor LaNiGa 2 is enabled by its previously unknown topological electronic band structure, with Dirac lines and a Dirac loop at the Fermi level. Two symmetry related Dirac points even remain degenerate under spin-orbit coupling. These unique topological features enable an unconventional superconducting gap in which time-reversal symmetry can be broken in the absence of other typical ingredients. Our findings provide a route to identify a new type of unconventional superconductors based on nonsymmorphic symmetries and will enable future discoveries of topological crystalline superconductors.more » « less
-
Abstract The exploration of topologically-ordered states of matter is a long-standing goal at the interface of several subfields of the physical sciences. Such states feature intriguing physical properties such as long-range entanglement, emergent gauge fields and non-local correlations, and can aid in realization of scalable fault-tolerant quantum computation. However, these same features also make creation, detection, and characterization of topologically-ordered states particularly challenging. Motivated by recent experimental demonstrations, we introduce a paradigm for quantifying topological states—locally error-corrected decoration (LED)—by combining methods of error correction with ideas of renormalization-group flow. Our approach allows for efficient and robust identification of topological order, and is applicable in the presence of incoherent noise sources, making it particularly suitable for realistic experiments. We demonstrate the power of LED using numerical simulations of the toric code under a variety of perturbations. We subsequently apply it to an experimental realization, providing new insights into a quantum spin liquid created on a Rydberg-atom simulator. Finally, we extend LED to generic topological phases, including those with non-abelian order.