skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2125899

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Complex network theory has focused on properties of networks with real-valued edge weights. However, in signal transfer networks, such as those representing the transfer of light across an interferometer, complex-valued edge weights are needed to represent the manipulation of the signal in both magnitude and phase. These complex-valued edge weights introduce interference into the signal transfer, but it is unknown how such interference affects network properties such as small-worldness. To address this gap, we have introduced a small-world interferometer network model with complex-valued edge weights and generalized existing network measures to define the interferometric clustering coefficient, the apparent path length, and the interferometric small-world coefficient. Using high-performance computing resources, we generated a large set of small-world interferometers over a wide range of parameters in system size, nearest-neighbor count, and edge-weight phase and computed their interferometric network measures. We found that the interferometric small-world coefficient depends significantly on the amount of phase on complex-valued edge weights: for small edge- weight phases, constructive interference led to a higher interferometric small-world coefficient; while larger edge-weight phases induced destructive interference which led to a lower interferometric small-world coefficient. Thus, for the small-world interferometer model, interferometric measures are necessary to capture the effect of interference on signal transfer. This model is an example of the type of problem that necessitates interferometric measures, and applies to any wave-based network including quantum networks. 
    more » « less
  2. Abstract The speed limit of quantum state transfer (QST) in a system of interacting particles is not only important for quantum information processing, but also directly linked to Lieb–Robinson-type bounds that are crucial for understanding various aspects of quantum many-body physics. For strongly long-range interacting systems such as a fully-connected quantum computer, such a speed limit is still unknown. Here we develop a new quantum brachistochrone method that can incorporate inequality constraints on the Hamiltonian. This method allows us to prove an exactly tight bound on the speed of QST on a subclass of Hamiltonians experimentally realizable by a fully-connected quantum computer. 
    more » « less
  3. Nanometer-scale crystallographic structure and orientation of a NbTiN/AlN/NbTiN device stack grown via plasma-assisted molecular beam epitaxy on c-plane sapphire are reported. Structure, orientation, interface roughness, and thickness are investigated using correlative four-dimensional scanning transmission electron microscopy and atom probe tomography (APT). This work finds NbTiN that is rock salt structured and highly oriented toward ⟨111⟩ with rotations about that axis corresponding to step edges in the c-plane sapphire with a myriad of twin boundaries that exhibit nanoscale spacing. The wurtzite (0001) AlN film grown on (111) NbTiN exhibits nm-scale changes in the thickness resulting in pinhole shorts across the barrier junction. The NbTiN overlayer grown on AlN is polycrystalline, randomly oriented, and highly strained. APT was also used to determine local changes in chemistry within the superconductor and dielectric. Deviation from both intended cation:cation and cation:anion ratios are observed. The results from conventional and nanoscale metrology highlight the challenges of engineering nitride trilayer heterostructures in material systems with complicated and understudied phase space. 
    more » « less
  4. Goldilocks quantum cellular automata (QCA) have been simulated on quantum hardware and produce emergent small-world correlation networks. In Goldilocks QCA, a single-qubit unitary is applied to each qubit in a one-dimensional chain subject to a balance constraint: a qubit is updated if its neighbors are in opposite basis states. Here, we prove that a subclass of Goldilocks QCA -- including the one implemented experimentally -- map onto free fermions and therefore can be classically simulated efficiently. We support this claim with two independent proofs, one involving a Jordan--Wigner transformation and one mapping the integrable six-vertex model to QCA. We compute local conserved quantities of these QCA and predict experimentally measurable expectation values. These calculations can be applied to test large digital quantum computers against known solutions. In contrast, typical Goldilocks QCA have equilibration properties and quasienergy-level statistics that suggest nonintegrability. Still, the latter QCA conserve one quantity useful for error mitigation. Our work provides a parametric quantum circuit with tunable integrability properties with which to test quantum hardware. 
    more » « less
  5. Fractional evolution equations lack generally accessible and well-converged codes excepting anomalous diffusion. A particular equation of strong interest to the growing intersection of applied mathematics and quantum information science and technology is the fractional Schrödinger equation, which describes sub-and super-dispersive behavior of quantum wavefunctions induced by multiscale media. We derive a computationally efficient sixth-order split-step numerical method to converge the eigenfunctions of the FSE to arbitrary numerical precision for arbitrary fractional order derivative. We demonstrate applications of this code to machine precision for classic quantum problems such as the finite well and harmonic oscillator, which take surprising twists due to the non-local nature of the fractional derivative. For example, the evanescent wave tails in the finite well take a Mittag-Leffer-like form which decay much slower than the well-known exponential from integer-order derivative wave theories, enhancing penetration into the barrier and therefore quantum tunneling rates. We call this effect \emph{fractionally enhanced quantum tunneling}. This work includes an open source code for communities from quantum experimentalists to applied mathematicians to easily and efficiently explore the solutions of the fractional Schrödinger equation in a wide variety of practical potentials for potential realization in quantum tunneling enhancement and other quantum applications. 
    more » « less
  6. Topologically ordered phases of matter elude Landau's symmetry-breaking theory, featuring a variety of intriguing properties such as long-range entanglement and intrinsic robustness against local perturbations. Their extension to periodically driven systems gives rise to exotic new phenomena that are forbidden in thermal equilibrium. Here, we report the observation of signatures of such a phenomenon -- a prethermal topologically ordered time crystal -- with programmable superconducting qubits arranged on a square lattice. By periodically driving the superconducting qubits with a surface-code Hamiltonian, we observe discrete time-translation symmetry breaking dynamics that is only manifested in the subharmonic temporal response of nonlocal logical operators. We further connect the observed dynamics to the underlying topological order by measuring a nonzero topological entanglement entropy and studying its subsequent dynamics. Our results demonstrate the potential to explore exotic topologically ordered nonequilibrium phases of matter with noisy intermediate-scale quantum processors. 
    more » « less
  7. The speed of elementary quantum gates ultimately sets the limit on the speed at which quantum circuits can operate. For a fixed physical interaction strength between two qubits, the speed of any two-qubit gate is limited even with arbitrarily fast single-qubit gates. In this work, we explore the possibilities of speeding up two-qubit gates beyond such a limit by expanding our computational space outside the qubit subspace, which is experimentally relevant for qubits encoded in multi-level atoms or anharmonic oscillators. We identify an optimal theoretical bound for the speed limit of a two-qubit gate achieved using two qudits with a bounded interaction strength and arbitrarily fast single-qudit gates. In addition, we find an experimentally feasible protocol using two parametrically coupled superconducting transmons that achieves this theoretical speed limit in a non-trivial way. We also consider practical scenarios with limited single-qudit drive strengths and off-resonant transitions. For such scenarios, we develop an open-source, machine learning assisted, quantum optimal control algorithm that can achieve a speedup close to the theoretical limit with near-perfect gate fidelity. This work opens up a new avenue to speed up two-qubit gates when the physical interaction strength between qubits cannot be easily increased while extra states outside the qubit subspace can be well controlled. 
    more » « less
  8. A canonical feature of the constraint satisfaction problems in NP is approximation hardness, where in the worst case, finding sufficient-quality approximate solutions is exponentially hard for all known methods. Fundamentally, the lack of any guided local minimum escape method ensures both exact and approximate classical approximation hardness, but the equivalent mechanism(s) for quantum algorithms are poorly understood. For algorithms based on Hamiltonian time evolution, we explore this question through the prototypically hard MAX-3-XORSAT problem class. We conclude that the mechanisms for quantum exact and approximation hardness are fundamentally distinct. We review known results from the literature, and identify mechanisms that make conventional quantum methods (such as Adiabatic Quantum Computing) weak approximation algorithms in the worst case. We construct a family of spectrally filtered quantum algorithms that escape these issues, and develop analytical theories for their performance. We show that, for random hypergraphs in the approximation-hard regime, if we define the energy to be E=Nunsat−Nsat, spectrally filtered quantum optimization will return states with E≤qmEGS (where EGS is the ground state energy) in sub-quadratic time, where conservatively, qm≃0.59. This is in contrast to qm→0 for the hardest instances with classical searches. We test all of these claims with extensive numerical simulations. We do not claim that this approximation guarantee holds for all possible hypergraphs, though our algorithm's mechanism can likely generalize widely. These results suggest that quantum computers are more powerful for approximate optimization than had been previously assumed. 
    more » « less