Abstract Coupled global climate models (GCMs) generally fail to reproduce the observed sea‐surface temperature (SST) trend pattern since the 1980s. The model‐observation discrepancies may arise in part from the lack of realistic Antarctic ice‐sheet meltwater input in GCMs. Here we employ two sets of CESM1‐CAM5 simulations forced by anomalous Antarctic meltwater fluxes over 1980–2013 and through the 21st century. Both show a reduced global warming rate and an SST trend pattern that better resembles observations. The meltwater drives surface cooling in the Southern Ocean and the tropical southeast Pacific, in turn increasing low‐cloud cover and driving radiative feedbacks to become more stabilizing (corresponding to a lower effective climate sensitivity). These feedback changes can contribute as substantially as ocean heat uptake efficiency changes in reducing the global warming rate. Accurately projecting historical and future warming thus requires improved representation of Antarctic meltwater and its impacts.
more »
« less
From the Surface to the Stratosphere: Large‐Scale Atmospheric Response to Antarctic Meltwater
Abstract The ocean response to Antarctic Ice Sheet (AIS) mass loss has been extensively studied using numerical models, but less attention has been given to the atmosphere. We examine the global atmospheric response to AIS meltwater in an ensemble of experiments performed using two fully coupled climate models under a pre‐industrial climate. In response to AIS meltwater, the experiments yield cooling from the surface to the tropopause over the subpolar Southern Ocean, warming in the Southern Hemisphere polar stratosphere, and cooling in the upper tropical troposphere. Positive feedbacks, initiated by disrupted ocean‐atmosphere heat exchange, result in a change in the top‐of‐atmosphere radiative balance caused primarily through surface and near‐surface albedo changes. Changes in the atmospheric thermal structure alter the jet streams aloft. The results highlight the global influence of AIS melting on the climate system and the potential for impacts on mid‐latitude climate patterns and delayed regional warming signals.
more »
« less
- PAR ID:
- 10554324
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 21
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Despite substantial global mean warming, surface cooling has occurred in both the tropical eastern Pacific Ocean and the Southern Ocean over the past 40 years, influencing both regional climates and estimates of Earth’s climate sensitivity to rising greenhouse gases. While a tropical influence on the extratropics has been extensively studied in the literature, here we demonstrate that the teleconnection works in the other direction as well, with the southeast Pacific sector of the Southern Ocean exerting a strong influence on the tropical eastern Pacific. Using a slab ocean model, we find that the tropical Pacific sea surface temperature (SST) response to an imposed Southern Ocean surface heat flux forcing is sensitive to the longitudinal location of that forcing, suggesting an atmospheric pathway associated with regional dynamics rather than reflecting a zonal-mean energetic constraint. The transient response shows that an imposed Southern Ocean cooling in the southeast Pacific sector first propagates into the tropics by mean-wind advection. Once tropical Pacific SSTs are perturbed, they then drive remote changes to atmospheric circulation in the extratropics that further enhance both Southern Ocean and tropical cooling. These results suggest a mutually interactive two-way teleconnection between the Southern Ocean and tropical Pacific through atmospheric circulations, and highlight potential impacts on the tropics from the extratropical climate changes over the instrumental record and in the future.more » « less
-
Abstract A hierarchy of general circulation models (GCMs) is used to investigate the linearity of the response of the climate system to changes in Antarctic topography. Experiments were conducted with a GCM with either a slab ocean or fixed SSTs and sea ice, in which the West Antarctic ice sheet (WAIS) and coastal Antarctic topography were either lowered or raised in an idealized way. Additional experiments were conducted with a fully coupled GCM with topographic perturbations based on an ice-sheet model in which the WAIS collapses. The response over the continent is the same in all model configurations and is mostly linear. In contrast, the response has substantial nonlinear elements over the Southern Ocean that depend on the model configuration and are due to feedbacks with sea ice, ocean, and clouds. The atmosphere warms near the surface over much of the Southern Ocean and cools in the stratosphere over Antarctica, whether topography is raised or lowered. When topography is lowered, the Southern Ocean surface warming is due to strengthened southward atmospheric heat transport and associated enhanced storminess over the WAIS and the high latitudes of the Southern Ocean. When topography is raised, Southern Ocean warming is more limited and is associated with circulation anomalies. The response in the fully coupled experiments is generally consistent with the more idealized experiments, but the full-depth ocean warms throughout the water column whether topography is raised or lowered. These results indicate that ice sheet–climate system feedbacks differ depending on whether the Antarctic ice sheet is gaining or losing mass. Significance StatementThroughout Earth’s history, the Antarctic ice sheet was at times taller or shorter than it is today. The purpose of this study is to investigate how the atmosphere, sea ice, and ocean around Antarctica respond to changes in ice sheet height. We find that the response to lowering the ice sheet is not the opposite of the response to raising it, and that in either case the ocean surface near the continent warms. When the ice sheet is raised, the ocean warming is related to circulation changes; when the ice sheet is lowered, the ocean warming is from an increase in southward atmospheric heat transport. These results are important for understanding how the ice sheet height and local climate evolve together through time.more » « less
-
Abstract We use two coupled climate models, GFDL‐CM4 and GFDL‐ESM4, to investigate the physical response of the Southern Ocean to changes in surface wind stress, Antarctic meltwater, and the combined forcing of the two in a pre‐industrial control simulation. The meltwater cools the ocean surface in all regions except the Weddell Sea, where the wind stress warms the near‐surface layer. The limited sensitivity of the Weddell Sea surface layer to the meltwater is due to the spatial distribution of the meltwater fluxes, regional bathymetry, and large‐scale circulation patterns. The meltwater forcing dominates the Antarctic shelf response and the models yield strikingly different responses along West Antarctica. The disagreement is attributable to the mean‐state representation and meltwater‐driven acceleration of the Antarctic Slope Current (ASC). In CM4, the meltwater is efficiently trapped on the shelf by a well resolved, strong, and accelerating ASC which isolates the West Antarctic shelf from warm offshore waters, leading to strong subsurface cooling. In ESM4, a weaker and diffuse ASC allows more meltwater to escape to the open ocean, the West Antarctic shelf does not become isolated, and instead strong subsurface warming occurs. The CM4 results suggest a possible negative feedback mechanism that acts to limit future melting, while the ESM4 results suggest a possible positive feedback mechanism that acts to accelerate melt. Our results demonstrate the strong influence the ASC has on governing changes along the shelf, highlighting the importance of coupling interactive ice sheet models to ocean models that can resolve these dynamical processes.more » « less
-
Enhanced Antarctic ice sheet mass loss yields ocean surface freshening, cooling and sea ice expansion, which result in changes in the atmospheric conditions. Using the Southern Ocean Freshwater Input from Antarctica (SOFIA) multi‐model ensemble, we study the atmospheric response to a 100‐year idealized freshwater release of 0.1 Sv. All models simulate a surface‐intensified tropospheric cooling and lower‐stratospheric warming south of 35°S. Tropospheric cooling is attributed to sea ice expansion and the associated albedo enhancement in winter and a colder sea surface in summer. This cooling yields a downward displacement of the tropopause, reduced stratospheric water vapor content and ultimately warming around 200 hPa. An enhanced southward eddy heat flux explains warming at 10–100 hPa during austral winter. Despite a temporally (and spatially) uniform prescribed freshwater flux, a prominent sea ice seasonal cycle and atmosphere dynamics result in a distinct seasonal pattern in the occurrence and magnitude of the temperature responses.more » « less
An official website of the United States government
