Abstract As Arctic regions warm rapidly, it is unclear whether high‐latitude soil carbon (C) will decrease or increase. Predicting future dynamics of Arctic soil C stocks requires a better understanding of the quantities and controls of soil C. We explore the relationship between vegetation and surface soil C in an understudied region of the Arctic: Baffin Island, Nunavut, Canada. We combined soil C data for three vegetation types—polar desert, mesic tundra, and wet meadow—with a vegetation classification to upscale soil C stocks. Surface soil C differed significantly across vegetation types, and interactions existed between vegetation type and soil depth. Polar desert soils were consistently mineral, with relatively thin organic layers, low percent C, and high bulk density. Mesic soils exhibited an organic‐rich epipedon overlying mineral soil. Wet meadows were consistently organic soil with low bulk density and high percent C. For the top 20 cm, polar desert contained the least soil C (2.17 ± 0.48 kg m−2); mesic tundra had intermediate C (8.92 ± 0.74 kg m−2); wet meadow stored the most C (13.07 ± 0.69 kg m−2). Extrapolating to the top 30 cm, our results suggest that approximately 44 Tg C is stored in the study region with a mean landscape soil C stock of 2.75 kg m−2for non‐water areas. Combining vegetation mapping with local soil C stocks considerably narrows the range of estimates from other upscaling approaches (27–189 Tg) for soil C on South Baffin Island.
more »
« less
Vegetation type, soil biogeochemical data, and upscaled soil carbon on South Baffin Island, Nunavut, Canada, 2022
Predictions of how rapid warming will affect Arctic soil carbon (C) stocks are limited by an uneven sampling distribution across the pan-arctic region. Working in an understudied region of the Arctic, this project aims to improve our understanding of the quantities and controls on soil C. Specifically, we combined soil C data for three vegetation types, polar desert, mesic tundra, and wet meadow, with a vegetation classification to upscale soil C stocks on South Baffin Island. The uploaded dataset contains two sets of paired files. 1) Metadata and geochemistry files to report soil biogeochemical data from 51 soil cores collected on South Baffin Island in July, 2022. 2) A record of the code and dataset used to generate a vegetation classification and soil C upscaling estimate for the study region.
more »
« less
- Award ID(s):
- 1802732
- PAR ID:
- 10554340
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- Soil carbon Upscaling Permafrost Biogeochemistry
- Format(s):
- Medium: X Other: text/xml
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Rapid warming of the Arctic terrestrial region has the potential to increase soil decomposition rates and form a carbon-driven feedback to future climate change. For an accurate prediction of the role of soil microbes in these processes, it will be important to understand the temperature responses of soil bacterial communities and implement them into biogeochemical models. The temperature adaptation of soil bacterial communities for a large part of the Arctic region is unknown. We evaluated the current temperature adaption of soil bacterial communities from 12 sampling sites in the sub- to High Arctic region. Temperature adaptation differed substantially between the soil bacterial communities of these sites, with estimates of optimal growth temperature (Topt) ranging between 23.4 ± 0.5 and 34.1 ± 3.7 ∘C. We evaluated possible statistical models for the prediction of the temperature adaption of soil bacterial communities based on different climate indices derived from soil temperature records or on bacterial community composition data. We found that highest daily average soil temperature was the best predictor for the Topt of the soil bacterial communities, increasing by 0.63 ∘C ∘C−1. We found no support for the prediction of temperature adaptation by regression tree analysis based on the relative abundance data of the most common bacterial species. Increasing summer temperatures will likely increase Topt of soil bacterial communities in the Arctic. Incorporating this mechanism into soil biogeochemical models and combining it with projections of soil temperature will help to reduce uncertainty in assessments of the vulnerability of soil carbon stocks in the Arctic.more » « less
-
Abstract Background Tall deciduous shrubs are increasing in range, size and cover across much of the Arctic, a process commonly assumed to increase carbon (C) storage. Major advances in remote sensing have increased our ability to monitor changes aboveground, improving quantification and understanding of arctic greening. However, the vast majority of C in the Arctic is stored in soils, where changes are more uncertain. Scope We present pilot data to argue that shrub expansion will cause changes in rhizosphere processes, including the development of new mycorrhizal associations that have the potential to promote soil C losses that substantially exceed C gains in plant biomass. However, current observations are limited in their spatial extent, and mechanistic understanding is still developing. Extending measurements across different regions and tundra types would greatly increase our ability to predict the biogeochemical consequences of arctic vegetation change, and we present a simple method that would allow such data to be collected. Conclusions Shrub expansion in the Arctic could promote substantial soil C losses that are unlikely to be offset by increases in plant biomass. However, confidence in this prediction is limited by a lack of information on how soil C stocks vary between contrasting Arctic vegetation communities; this needs to be addressed urgently.more » « less
-
null (Ed.)Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that 1014 − 175 + 194 Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate.more » « less
-
Objectives:Fine roots significantly influence ecosystem-scale cycling of nutrients, carbon (C), and water, yet there is limited understanding of how fine root traits vary across and within tropical forests, some of Earth's most C-rich ecosystems. The biomass of fine roots can impact soil carbon storage, as root mortality is a primary source of new carbon to soils. A positive relationship has been observed between fine root biomass and soil carbon stocks in Panama (Cusack et al 2018). Beyond biomass, root characteristics like specific root length (SRL) could also influence soil carbon, as roots with higher SRL are less dense and thinner, potentially decomposing more easily or promoting soil aggregation. Understanding the effects of root morphology and tissue quality on soil carbon storage and with soil properties in general can improve predictions of landscape-scale carbon patterns. We aggregated new data of root biomass, morphology and nutrient content at 0-10 cm, 10-20 cm, 20-50 cm and 50-100 cm depth increments across four distinct lowland Panamanian forests and paired with already published datasets (Cusack et al 2018; Cusack and Turner 2020) of soil chemistry from the same sites and soil depths to explore relationship between soil carbon stocks and root characteristics.Datasets included:The datasets provided include .csv and .xlsx files for fine root characteristics and soil chemistry from four different forests across 0-10 cm, 10-20 cm, 20-50 cm, and 50-100 cm depth increments. Root characteristics include live fine root biomass, dead fine root biomass, coarse root biomass, specific root length, root diameter, root tissue density, specific root area, root %N, root %C, and root C/N ratio. Soil chemistry data includes total carbon (TC), dissolved organic carbon (DOC), bulk density, total phosphorus (TP), available phosphorus (AEM Pi), and various Mehlich-extractable elements such as aluminum, calcium, iron, potassium, manganese, phosphorus, and zinc. Nitrogen content measures include ammonium, nitrate, total dissolved nitrogen (TDN), dissolved inorganic nitrogen (DIN), and dissolved organic nitrogen (DON). The dataset also includes total exchangeable bases (TEB) and effective cation exchange capacity (ECEC) in both centimoles of charge per kilogram and micromoles of charge per gram. The soil chemistry data was obtained from Cusack et al (2018) and Cusack and Turner (2020) and paired with root characteristics data for the same depth increments and sites. Additionally, a .kml file is provided with coordinates for all 32 plots included in the study across four forests (n = 8 plots per site). Root data was averaged across these 8 plots per site and soil data was collected in one pit in each site. This dataset serves as baseline data before a throughfall exclusion experiment, Panama Rainforest Changes with Experimental Drying (PARCHED), was implemented. No special software is needed to open these files.more » « less
An official website of the United States government
