skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Products of manifolds with fibered corners
Manifolds with fibered corners arise as resolutions of stratified spaces, as ‘many-body’ compactifications of vector spaces, and as compactifications of certain moduli spaces includ- ing those of non-abelian Yang–Mills–Higgs monopoles, among other settings. However, Cartesian products of manifolds with fibered corners do not generally have fibered corners themselves and thus fail to reflect the appropriate structure of products of the underlying spaces in the above settings. Here, we determine a resolution of the Cartesian product of fibered corners manifolds by blow-up which we call the ‘ordered product,’ which leads to a well-behaved category of fibered corners manifolds in which the ordered product satisfies the appropriate universal property. In contrast to the usual category of manifolds with cor- ners, this category of fibered corners not only has all finite products, but all finite transverse fiber products as well, and we show in addition that the ordered product is a natural product for wedge (aka incomplete edge) metrics and quasi-fibered boundary metrics, a class which includes QAC and QALE metrics.  more » « less
Award ID(s):
1811995
PAR ID:
10554525
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature B.V.
Date Published:
Journal Name:
Annals of Global Analysis and Geometry
Volume:
64
Issue:
2
ISSN:
0232-704X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We construct many new examples of complete Calabi-Yau metrics of maximal volume growth on certain smoothings of Cartesian products of Calabi-Yau cones with smooth cross-sections. A detailed description of the geometry at infinity of these metrics is given in terms of a compactification by a manifold with corners obtained through the notion of weighted blow-up for manifolds with corners. A key analytical step in the construction of these Calabi-Yau metrics is to derive good mapping properties of the Laplacian on some suitable weighted Hölder spaces. 
    more » « less
  2. He, Y.H.; Ge, M. L.; Bai, C.M.; Bao, J.; Hirst, E. (Ed.)
    In this brief note we explore the space of genus one and elliptic fibrations within CY manifolds, their organizing principles, and how they relate to the set of all CY manifolds. We provide examples of genus one fibered manifolds that exhibit different Hodge numbers -- and physically lead to different gauge groups - than their Jacobian fibrations. We suggest a physical mechanism for understanding this difference in twisted circle reductions of 6-dimensional compactifications of F-theory. 
    more » « less
  3. null (Ed.)
    In the example of complex grassmannians, we demonstrate various techniques available for computing genus-0 K-theoretic GW-invariants of flag manifolds and more general quiver varieties. In particular, we address explicit reconstruction of all such invariants using finite-difference operators, the role of the q-hypergeometric series arising in the context of quasimap compactifications of spaces of rational curves in such varieties, the theory of twisted GW-invariants including level structures, as well as the Jackson-type integrals playing the role of equivariant K-theoretic mirrors. 
    more » « less
  4. Abstract We present a domain-specific type theory for constructions and proofs in category theory. The type theory axiomatizes notions of category, functor, profunctor and a generalized form of natural transformations. The type theory imposes an ordered linear restriction on standard predicate logic, which guarantees that all functions between categories are functorial, all relations are profunctorial, and all transformations are natural by construction, with no separate proofs necessary. Important category-theoretic proofs such as the Yoneda lemma and Co-yoneda lemma become simple type-theoretic proofs about the relationship between unit, tensor and (ordered) function types, and can be seen to be ordered refinements of theorems in predicate logic. The type theory is sound and complete for a categorical model invirtual equipments, which model both internal and enriched category theory. While the proofs in our type theory look like standard set-based arguments, the syntactic discipline ensure that all proofs and constructions carry over to enriched and internal settings as well. 
    more » « less
  5. null (Ed.)
    Abstract The uniformization and hyperbolization transformations formulated by Bonk et al. in “Uniformizing Gromov Hyperbolic Spaces” , Astérisque, vol 270 (2001), dealt with geometric properties of metric spaces. In this paper we consider metric measure spaces and construct a parallel transformation of measures under the uniformization and hyperbolization procedures. We show that if a locally compact roughly starlike Gromov hyperbolic space is equipped with a measure that is uniformly locally doubling and supports a uniformly local p -Poincaré inequality, then the transformed measure is globally doubling and supports a global p -Poincaré inequality on the corresponding uniformized space. In the opposite direction, we show that such global properties on bounded locally compact uniform spaces yield similar uniformly local properties for the transformed measures on the corresponding hyperbolized spaces. We use the above results on uniformization of measures to characterize when a Gromov hyperbolic space, equipped with a uniformly locally doubling measure supporting a uniformly local p -Poincaré inequality, carries nonconstant globally defined p -harmonic functions with finite p -energy. We also study some geometric properties of Gromov hyperbolic and uniform spaces. While the Cartesian product of two Gromov hyperbolic spaces need not be Gromov hyperbolic, we construct an indirect product of such spaces that does result in a Gromov hyperbolic space. This is done by first showing that the Cartesian product of two bounded uniform domains is a uniform domain. 
    more » « less