- Award ID(s):
- 1906326
- Publication Date:
- NSF-PAR ID:
- 10288877
- Journal Name:
- Symmetry, Integrability and Geometry: Methods and Applications
- ISSN:
- 1815-0659
- Sponsoring Org:
- National Science Foundation
More Like this
-
The jeu-de-taquin-based Littlewood-Richardson rule of H. Thomas and A. Yong (2009) for minuscule varieties has been extended in two orthogonal directions, either enriching the cohomology theory or else expanding the family of varieties considered. In one direction, A. Buch and M. Samuel (2016) developed a combinatorial theory of 'unique rectification targets' in minuscule posets to extend the Thomas-Yong rule from ordinary cohomology to $K$-theory. Separately, P.-E. Chaput and N. Perrin (2012) used the combinatorics of R. Proctor's '$d$-complete posets' to extend the Thomas-Yong rule from minuscule varieties to a broader class of Kac-Moody structure constants. We begin to address the unification of these theories. Our main result is the existence of unique rectification targets in a large class of $d$-complete posets. From this result, we obtain conjectural positive combinatorial formulas for certain $K$-theoretic Schubert structure constants in the Kac-Moody setting.
-
Abstract We define quantum equivariant K-theory of Nakajima quiver varieties. We discuss type A in detail as well as its connections with quantum XXZ spin chains and trigonometric Ruijsenaars-Schneider models. Finally we study a limit which produces a K-theoretic version of results of Givental and Kim, connecting quantum geometry of flag varieties and Toda lattice.
-
Abstract We investigate the long-standing problem of finding a combinatorial rule for the Schubert structure constants in the $K$-theory of flag varieties (in type $A$). The Grothendieck polynomials of A. Lascoux–M.-P. Schützenberger (1982) serve as polynomial representatives for $K$-theoretic Schubert classes; however no positive rule for their multiplication is known in general. We contribute a new basis for polynomials (in $n$ variables) which we call glide polynomials, and give a positive combinatorial formula for the expansion of a Grothendieck polynomial in this basis. We then provide a positive combinatorial Littlewood–Richardson rule for expanding a product of Grothendieck polynomials in the glide basis. Our techniques easily extend to the $\beta$-Grothendieck polynomials of S. Fomin–A. Kirillov (1994), representing classes in connective $K$-theory, and we state our results in this more general context.
-
Abstract We introduce and study the continuous Rokhlin property for actions of compact groups on $C^*$-algebras. An important technical result is a characterization of the continuous Rokhlin property in terms of asymptotic retracts. As a consequence, we derive strong $KK$-theoretical obstructions to the continuous Rokhlin property. Using these, we show that the Universal Coefficient Theorem (UCT) is preserved under formation of crossed products and passage to fixed point algebras by such actions, even in the absence of nuclearity. Our analysis of the $KK$-theory of the crossed product allows us to prove a ${{\mathbb {T}}}$-equivariant version of Kirchberg–Phillips: two circle actions with the continuous Rokhlin property on Kirchberg algebras are conjugate whenever they are $KK^{{{\mathbb {T}}}}$-equivalent. In the presence of the UCT, this is equivalent to having isomorphic equivariant $K$-theory. We moreover characterize the $KK^{{{\mathbb {T}}}}$-theoretical invariants that arise in this way. Finally, we identify a $KK^{{{\mathbb {T}}}}$-theoretic obstruction to the continuous property, which is shown to be the only obstruction in the setting of Kirchberg algebras. We show by means of explicit examples that the Rokhlin property is strictly weaker than the continuous Rokhlin property.
-
Abstract Let $M$ be a compact 3-manifold and $\Gamma =\pi _1(M)$. Work by Thurston and Culler–Shalen established the ${\operatorname{\textrm{SL}}}_2({\mathbb{C}})$ character variety $X(\Gamma )$ as fundamental tool in the study of the geometry and topology of $M$. This is particularly the case when $M$ is the exterior of a hyperbolic knot $K$ in $S^3$. The main goals of this paper are to bring to bear tools from algebraic and arithmetic geometry to understand algebraic and number theoretic properties of the so-called canonical component of $X(\Gamma )$, as well as distinguished points on the canonical component, when $\Gamma $ is a knot group. In particular, we study how the theory of quaternion Azumaya algebras can be used to obtain algebraic and arithmetic information about Dehn surgeries, and perhaps of most interest, to construct new knot invariants that lie in the Brauer groups of curves over number fields.