skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Unique Benefits and Challenges of Mathematics Graduate Student Instructors Providing Teaching Feedback to their Peers
In this paper, we compare the types of teaching feedback that graduate student instructors provide their peers in comparison to more senior faculty at a large research-oriented university. Additionally, we consider the challenges and benefits that graduate student instructors report concerning providing teaching feedback to a peer. Our results reveal that graduate student instructors and faculty contribute distinct perspectives on teacher growth and together can form a strong support system for first-time graduate student instructors. Additionally, while observing a peer does pose real challenges, we found that graduate student instructors develop strategies to overcome these and report more benefits than difficulties.  more » « less
Award ID(s):
1821460
PAR ID:
10554543
Author(s) / Creator(s):
; ;
Publisher / Repository:
26th Annual Conference on Research in Undergraduate Mathematics Education
Date Published:
ISSN:
2474-9346
Page Range / eLocation ID:
625-632
Subject(s) / Keyword(s):
graduate student instructors, feedback, teaching observation, peer mentoring
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Faculty and peer interactions play a key role in shaping graduate student socialization. Yet, within the literature on graduate student socialization, researchers have primarily focused on understanding the nature and impact of faculty alone, and much less is known about how peer interactions also contribute to graduate student outcomes. Using a national sample of first-year biology doctoral students, this study reveals distinct categories that classify patterns of faculty and peer interaction. Further, we document inequities such that certain groups (e.g., underrepresented minority students) report constrained types of interactions with faculty and peers. Finally, we connect faculty and peer interaction patterns to student outcomes. Our findings reveal that, while the classification of faculty and peer interactions predicted affective and experiential outcomes (e.g., sense of belonging, satisfaction with academic development), it was not a consistent predictor of more central outcomes of the doctoral socialization process (e.g., research skills, commitment to degree). These and other findings are discussed, focusing on implications for future research, theory, and practice related to graduate training. 
    more » « less
  2. Foundational engineering courses are critical to student success in engineering programs. The conceptually challenging content of these courses establishes the requisite knowledge for future classes. Thus, it is no surprise that such courses can serve as barriers or gatekeepers to successful student progress through the undergraduate curriculum. Although the difficulty of the courses may be necessary, often other features of the course delivery such as large class environments or a few very high-stakes assessments can further exacerbate these challenges. And especially problematic, past studies have shown that grade penalties associated with these courses and environments may disproportionately impact women. On the faculty side, institutions often turn to non-tenure track instructional faculty to teach multiple sections of foundational courses each semester. Although having faculty whose sole role is dedicated to quality teaching is an asset, benefits would likely be maximized when such faculty have clear metrics for paths to promotion, some autonomy and ownership regarding the curriculum, and overall job satisfaction. However, literature suggests that faculty, like students, note ill effects from large classes, such as challenges connecting and building rapport with students and having time to offer individualized feedback to students. Our NSF IUSE project focuses on instructors of large foundational engineering students with the belief that by better understanding the educational environment from their perspective we can improve the quality of the teaching and learning environment for all engineering students. Our project regularly convenes faculty teaching an array of core courses (e.g,. Mathematics, Chemistry, Mechanics, Physics) and uses insights from these meetings and individual interviews to identify possible leverage points where our project or the institution more broadly might affect change. Parallel to this effort, we have been working with data stewards on campus to gain access to institutional data (e.g., student course and grade histories, student evaluations of faculty teaching) to link and provide aggregate deidentified results to faculty to feed more information in to their decision-making. We are demonstrating that regular engagement between faculty and institutional leaders around analyzed and curated data is essential to continuous and systematic improvement. Efforts to date have included building an institutional data explorer dashboard (e.g., influences of pre-requisite courses on future courses) and drafting reports to be sent to department heads and associate deans which gather priorities identified in the first year of our research. For example, participating instructors identified that clarity of promotion paths across non-tenure track teaching faculty from different departments varied greatly, and the institution as a whole could benefit from clarified university-wide guidance. While some findings may be institution-specific (NSF IUSE Institutional Transformation track), as a large public research institution, peer-institutions with high engineering enrollments often face similar challenges and so findings from our change efforts potentially have broad applicability. 
    more » « less
  3. This paper explores the implementation and impact of reflective practices in engineering courses, as perceived by faculty members and teaching assistants (TAs) who integrated these strategies in their Spring 2023 course offerings. Reflection provides a valuable opportunity for students to enhance their learning process and become more self-aware of their strengths, weaknesses, and overall progress. This study aims to investigate the experiences and perceptions of instructors who employed reflective practices and gain insights into the effectiveness and challenges associated with their implementation. The qualitative research design employed for this study involved conducting in-depth interviews with faculty members and TAs from two engineering disciplines, civil and environmental engineering, and biological systems engineering. These reflective practices encompassed six reflections over the semester, all aimed at promoting metacognition and fostering meaningful learning experiences. The interviews were structured to elicit detailed information regarding the perceived usefulness of reflective practices, the strategies employed, the perceived impact on student learning outcomes, and any observed challenges encountered during implementation. Preliminary results from interviews with three faculty members and three TAs highlighted the diverse ways in which reflective practices were integrated into engineering courses. Common themes emerged concerning the perceived benefits, including student and instructor growth, better self-regulation skills for the students, deeper learning, and enhanced critical thinking skills. Moreover, instructors found that these strategies could foster a more productive learning environment and improved student-teacher communication. However, challenges included time constraints, student resistance, and off-topic reflections. Faculty members and TAs stressed the importance of clear guidelines and scaffolding to optimize the effectiveness of reflective practices and mitigate these challenges. The findings from this study will contribute to the scholarship of teaching and learning by providing empirical evidence on the successful implementation and positive outcomes of reflective practices in engineering education. This study also pinpoints valuable recommendations for instructors seeking to implement reflective strategies effectively. Additionally, the insights gained provide a foundation for further research and discussion regarding the integration of reflective practices into alternative STEM disciplines. 
    more » « less
  4. In this study, two universities created and implemented a student-centered graduate student instructor observation protocol (GSIOP) and a post-observational Red-Yellow-Green feedback structure (RYG feedback). The GSIOP and RYG feedback was used with novice graduate student instructors (GSIs) by experienced GSIs through a peer-mentorship program. Ten trained mentor GSIs completed 50 sets of three observations of novice GSIs. Analyzing 151 GSIOPs and 151 RYG feedback meetings longitudinally provided insight to identify what types of feedback informed and influenced GSIOP scores. After qualitatively coding feedback along multiple dimensions, we found certain forms of feedback were more influential for GSI development than others with respect to change in GSIOP score. Our results indicate contextually-specific feedback leads to more observed changes and improvement across multiple observations than decontextualized feedback. 
    more » « less
  5. In this study, two universities created and implemented a student-centered graduate student instructor observation protocol (GSIOP) and a post-observational Red-Yellow-Green feedback structure (RYG feedback). The GSIOP and RYG feedback was used with novice graduate student instructors (GSIs) by experienced GSIs through a peer-mentorship program. Ten trained mentor GSIs completed 50 sets of three observations of novice GSIs. Analyzing 151 GSIOPs and 151 RYG feedback meetings longitudinally provided insight to identify what types of feedback informed and influenced GSIOP scores. After qualitatively coding feedback along multiple dimensions, we found certain forms of feedback were more influential for GSI development than others with respect to change in GSIOP score. Our results indicate contextually-specific feedback leads to more observed changes and improvement across multiple observations than decontextualized feedback. 
    more » « less