Abstract A new optical delivery system has been developed for the (scanning) transmission electron microscope. Here we describe the in situ and “rapid ex situ ” photothermal heating modality of the system, which delivers >200 mW of optical power from a fiber-coupled laser diode to a 3.7 μ m radius spot on the sample. Selected thermal pathways can be accessed via judicious choices of the laser power, pulse width, number of pulses, and radial position. The long optical working distance mitigates any charging artifacts and tremendous thermal stability is observed in both pulsed and continuous wave conditions, notably, no drift correction is applied in any experiment. To demonstrate the optical delivery system’s capability, we explore the recrystallization, grain growth, phase separation, and solid state dewetting of a Ag 0.5 Ni 0.5 film. Finally, we demonstrate that the structural and chemical aspects of the resulting dewetted films was assessed.
more »
« less
This content will become publicly available on December 1, 2025
Cutting speed and behaviors of ice using Yb-doped fiber laser
The use of a laser to cut or drill ice has been proposed and demonstrated multiple times in previous decades as a novel, but never adopted, machining tool in glaciology and paleoclimate studies. However, with the rapid development of high power fiber-laser technology over the past few decades, it is timely to perform further studies using this new tool. An investigation is made herein on the cutting of ice using a Yb-doped fiber laser emitting at a wavelength of 1070 nm, the most extensively developed and highest power fiber laser technology, in pulsed and continuous-wave operation. Visible-light observations of clear tap water ice samples, moving at a constant velocity relative to a pulsed laser beam, demonstrate a linear relationship between the duration of a millisecond-range laser pulse and the depth of the meltwater-free cut formed in response. Thermal imaging of the irradiated face shows that peripheral heating trends linearly for pulse lengths greater than 5 ms. A comparison of pulse trains with a constant time-averaged power suggests that shorter pulses are advantageous in slot-cutting efficiency and in minimizing visible alterations in the surrounding ice. These results demonstrate the viability of powerful fiber-compatible lasers as a tool for ice sample retrieval and processing.
more »
« less
- Award ID(s):
- 2032463
- PAR ID:
- 10554583
- Publisher / Repository:
- Elsevier B.V.
- Date Published:
- Journal Name:
- Cold Regions Science and Technology
- Volume:
- 228
- Issue:
- C
- ISSN:
- 0165-232X
- Page Range / eLocation ID:
- 104335
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mamyshev oscillators produce high-performance pulses, but technical and practical issues render them unsuitable for widespread use. Here we present a Mamyshev oscillator with several key design features that enable self-starting operation and unprecedented performance and simplicity from an all-fiber laser. The laser generates 110 nJ pulses that compress to 40 fs and 80 nJ with a grating pair. The pulse energy and duration are both the best achieved by a femtosecond all-fiber laser to date, to our knowledge, and the resulting peak power of 1.5 MW is 20 times higher than that of prior all-fiber, self-starting lasers. The simplicity of the design, ease of use, and pulse performance make this laser an attractive tool for practical applications.more » « less
-
Abstract With the invention of chirped pulse amplification for lasers in the mid-1980s, high power ultrafast lasers entered into the world as a disruptive tool, with potential impact on a broad range of application areas. Since then, ultrafast lasers have revolutionized laser–matter interaction and unleashed their potential applications in manufacturing processes. With unprecedented short pulse duration and high laser intensity, focused optical energy can be delivered to precisely define material locations on a time scale much faster than thermal diffusion to the surrounding area. This unique characteristic has fundamentally changed the way laser interacts with matter and enabled numerous manufacturing innovations over the past few decades. In this paper, an overview of ultrafast laser technology with an emphasis on femtosecond laser is provided first, including its development, type, working principle, and characteristics. Then, ultrafast laser applications in manufacturing processes are reviewed, with a focus on micro/nanomachining, surface structuring, thin film scribing, machining in bulk of materials, additive manufacturing, bio manufacturing, super high resolution machining, and numerical simulation. Both fundamental studies and process development are covered in this review. Insights gained on ultrafast laser interaction with matter through both theoretical and numerical researches are summarized. Manufacturing process innovations targeting various application areas are described. Industrial applications of ultrafast laser-based manufacturing processes are illustrated. Finally, future research directions in ultrafast laser-based manufacturing processes are discussed.more » « less
-
We propose a measurement of laser-induced vacuum birefringence through the use of pulsed lasers coupled to femtosecond optical enhancement cavities. This measurement technique features cavity-enhanced pump and probe pulses, as well as an independent control pulse. The control pulse allows for a differential measurement where the final signal is obtained using high-frequency lock-in detection, greatly mitigating time-dependent cavity birefringence as an important and possibly prohibitive systematic effect. In addition, the method features the economical use of laser power and results in a relatively simple experimental setup.more » « less
-
Selected area deposition of high purity gold films onto nanoscale 3D architectures is highly desirable as gold is conductive, inert, plasmonically active, and can be functionalized with thiol chemistries, which are useful in many biological applications. Here, we show that high-purity gold coatings can be selectively grown with the Me2Au (acac) precursor onto nanoscale 3D architectures via a pulsed laser pyrolytic chemical vapor deposition process. The selected area of deposition is achieved due to the high thermal resistance of the nanoscale geometries. Focused electron beam induced deposits (FEBID) and carbon nanofibers are functionalized with gold coatings, and we demonstrate the effects that laser irradiance, pulse width, and precursor pressure have on the growth rate. Furthermore, we demonstrate selected area deposition with a feature-targeting resolutions of ~100 and 5 µm, using diode lasers coupled to a multimode (915 nm) and single mode (785 nm) fiber optic, respectively. The experimental results are rationalized via finite element thermal modeling.more » « less
An official website of the United States government
