skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Facilitating the Transition of Underrepresented Minority STEM Dissertators into Academic Careers: Evolution of TxARM AGEP Alliance Model
A national focus on Diversity, Equity, and Inclusion (DEI) has increased public awareness and acknowledgement of challenges faced by members of Under-represented Minority (URM) groups pursuing academic careers. This case study of a multi-institutional partner-ship explores the development, implementation, and evolution of a replicable model to transition a cohort of STEM URM dissertators into the professoriate. The model structured cohort engagement around an Individual Development Plan (IDP), cohort participant engagement with multiple mentors, monthly scholarly learning community meetings, research and teaching immersion experiences at Historically Black Colleges and Universities (HBCUs) and international institutions, and support and training around transferable skills necessary for job preparation and success, such as grant development, job search, portfolio preparation, interview skills, and online course development. Program evaluation results emphasized the evolution of collaborative practice among stakeholders in promoting the success of the model and among cohort participants as these participants transitioned into academic careers. Discussion of best practices to design and fine-tune the model included engagement of cohort participants in refining the implementation of the model activities, offering personalized services to the cohort members, and engaging research and practitioner communities using multiple dissemination strategies. The results of this work include publicly available virtual resources curated as part of the dissemination plan that can be explored for implementation at other institutions and use by individuals.  more » « less
Award ID(s):
1723165
PAR ID:
10554619
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ERIC
Date Published:
Journal Name:
Journal of STEM education
Volume:
24
Issue:
1
ISSN:
1557-5284
Page Range / eLocation ID:
31-41
Subject(s) / Keyword(s):
STEM Partnership Programs, Collaborative Practice, Continuous Improvement, Higher Education, Diversity, Equity, Inclusion of Underrepresented Minorities, Early Career Faculty, Alliances for Graduate Educa-tion and the Professoriate (AGEP)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deniz, Elif Ulutaş (Ed.)
    Effective science communication and stakeholder engagement are crucial skills for climate scientists, yet formal training in these areas remains limited in graduate education. The National Science Foundation Research Traineeship (NRT) at Auburn University (AU) addresses this gap through an innovative program combining science communication training with co-production approaches to enhance climate resiliency of built, natural, and social systems within the Southeastern United States (US). This paper evaluates the effectiveness of two novel graduate-level courses: one focused on science communication for non-technical audiences and another combining co-production methods with practical internship experience. Our research employed a mixed-methods approach, including a comprehensive analysis of course catalogs from 146 research-intensive universities and qualitative assessment of student experiences through surveys and descriptive exemplars. Analysis revealed that AU’s NRT program is unique among peer institutions in offering both specialized science communication training and co-production internship opportunities to graduate students across departments. Survey data from 11 program participants and detailed case studies of three program graduates demonstrated significant professional development benefits. Key outcomes included enhanced stakeholder engagement capabilities, improved science communication skills, and better preparation for both academic and non-academic careers. These findings suggest that integrating structured science communication training with hands-on co-production experience provides valuable preparation for climate scientists. The success of AU’s program model indicates that similar curriculum structures could benefit graduate programs nationwide, particularly in preparing students to effectively communicate complex scientific concepts to diverse audiences and engage with stakeholders in climate resilience efforts. 
    more » « less
  2. This study investigates engineering students’ transitions from academic to professional environments by examining the role capstone design courses play in preparing graduates for the workplace. To better understand how capstone design experiences contribute to graduates’ professional preparation, we are collecting data from participants from four different institutions with project-based capstone courses as they begin post-graduation positions in a variety of engineering workplaces. Through quantitative and qualitative methods, our study is designed to collect insights from participants in their first 12 months on the job. Currently we are collecting and analyzing data from the first of two planned cohorts of participants. Preliminary results for the participants in the first cohort point towards interesting trends regarding participants’ frequency of activities and perception of their preparedness. Professional skills such as team meetings were listed most frequently as activities engaged in by participants, and while there were particular areas such as budgeting where participants felt less prepared, overall their perception of preparedness indicates that capstone design courses and the larger engineering curriculum they are housed within are preparing students for professional careers. 
    more » « less
  3. This work in progress paper presents an overview of the Hispanic Alliance for the Graduate Education and the Professoriate (H-AGEP) program. H-AGEP is working on developing and implementing a new model to improve the preparation and transition of Hispanic STEM doctoral students into community college faculty positions. The partnership is a collaborative effort between the City College of New York (CCNY) (lead institution) and The University of Texas at El Paso (UTEP) along with a group of partner community colleges: LaGuardia Community College, Queensborough Community College, and El Paso Community College. The H-AGEP model consists of three main elements: (1) a training and mentoring program for effective STEM teaching at community colleges; (2) a training program for effective mentoring of community college students in STEM research; and (3) a professional development program to address career preparation, transitioning, and advancement at academic careers in community colleges. H-AGEP research goals are: (1) to consider the collected evaluation and research data to determine what intervention activities are most impactful, and (2) to better understand the career-decision making process of Hispanic STEM doctoral students regarding whether they will seek employment at community colleges and other two-year institutions. An interesting aspect of the partnership is that the institutions in El Paso, Texas, serve primarily a Mexican-American student population while the New York institutions serve primarily a Hispanic population of Caribbean origin. This provides the unique opportunity to compare Hispanic students from both groups. The program evaluation: (1) documents and provides feedback on H-AGEP activities and model implementation; and (2) assesses the extent to which H-AGEP is achieving its intended outcomes. Assessment results on the first cohort of students in the program show the value of including community college faculty as career and teaching mentors in the program. Furthermore, the effect of model interventions in students from the first cohort show positive advances in improving teaching skills, increasing student professional networks, and increasing interest and awareness in careers at community college. 
    more » « less
  4. This paper examines the impact of a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (NSF S-STEM) Program at a large, Minority-Serving institution in the western U.S. Despite growing efforts to diversify STEM fields, underrepresented minority (URM) students continue to face significant challenges in persistence and success. This scholarship program addresses these challenges by providing financial support, faculty and peer mentorship, and skills development opportunities to academically talented and low-income URM STEM students. This study evaluates how participation in the program enhances key noncognitive skills, such as students' sense of belonging, leadership and collaboration skills, and science identity, which are critical to STEM persistence. Using both survey and university-based data among the 47 participating scholars, results reveal that program participants report strong levels of sense of belonging, high efficacy in leadership and collaboration skills, and strong science/math identities. Additionally, compared to university rates, scholarship students showed above-average retention and graduation rates, with the majority pursuing graduate studies or careers in STEM. These findings highlight the importance of comprehensive support programs that integrate financial aid, mentorship, and professional development to promote persistence and success among URM students in STEM fields. 
    more » « less
  5. This study expands on our prior work of the Research Experience for Undergraduates (REU) SITE program to provide data on participant preparation for success in graduate school and their perceptions of the program. In the first two studies from our initial cohort, we summarized that we effectively provided an independent research experience, increased participants perception of preparedness for success in the graduate application process and graduate school and increased their ability to communicate about Biomechanics and Mechanobiology (BMMB)1. In the follow up study we showed that by the end of the program students believed they were better prepared for success in graduate school, two students co-authored publications from their projects, and the majority were enrolled in a graduate program2. Here we share data across our first two cohorts which expands our outcomes associated with graduate school preparation and student perceptions of the REU SITE program. We used our site-licensed online survey tool Qualtrics to administer the surveys for data collection. We used the same pre- and post-survey data to assess changes for both ten student cohorts over the 10-week period. The data were analyzed using a paired t-test from GraphPad Prism 9.3.0 software. This study confirmed the findings from the first two studies while highlighting new information. The new analysis conducted across both cohorts showed participation in the program influenced student interest in applying to graduate school p< 0.05. Additionally, the data show that participants felt more prepared to conduct independent research after participating p<0.05. Of the twenty participants the twelve students who have graduated or will be graduating before summer 2023 are enrolled in a graduate program or have applied for admission. Six of those yet to graduate reported they plan to pursue a graduate degree after completing their BS degree. Additionally, students felt the program prepared them to find and read research articles p<0.01 and participate at a conference p<0.05, skills that will be beneficial for success in a graduate program. Ninety-five percent of the participants indicated the REU SITE met or exceeded their expectations and would recommend the program to others. Similarly, 95% were satisfied with the mentorship of their graduate ambassador and 100% indicated they were satisfied with the mentorship of their faculty. Additionally, we were excited to find that after an adjustment to our program after the first cohort, the second cohort felt prepared to contribute to the field of BMMB p<0.05. This was an objective of the program that was not achieved with the first cohort. Lastly, 85% of participants were from underrepresented minority (URM) backgrounds and 70% were female. Thus, the enrollment of our participants in graduate programs continues to enhance diversity in engineering and the field of BMMB. Going forward we will continue to track the progress of participants and the careers they choose after completion of their graduate degrees. We will also continue to use student feedback to improve the experience for participants. 
    more » « less