Low-latency and low-power edge AI is crucial for Virtual Reality and Augmented Reality applications. Recent advances demonstrate that hybrid models, combining convolution layers (CNN) and transformers (ViT), often achieve a superior accuracy/performance tradeoff on various computer vision and machine learning (ML) tasks. However, hybrid ML models can present system challenges for latency and energy efficiency due to their diverse nature in dataflow and memory access patterns. In this work, we leverage architecture heterogeneity from Neural Processing Units (NPU) and Compute-In-Memory (CIM) and explore diverse execution schemas to efficiently execute these hybrid models. We introduce H4H-NAS, a two-stage Neural Architecture Search (NAS) framework to automate the design of efficient hybrid CNN/ViT models for heterogeneous edge systems featuring both NPU and CIM. We propose a two-phase incremental supernet training in our NAS framework to resolve gradient conflicts between sampled subnets caused by different types of blocks in a hybrid model search space. Our H4H-NAS approach is also powered by a performance estimator built with NPU performance results measured on real silicon, and CIM performance based on industry IPs. H4H-NAS searches hybrid CNN-ViT models with fine granularity and achieves significant (up to 1.34%) top-1 accuracy improvement on ImageNet. Moreover, results from our algorithm/hardware co-design reveal up to 56.08% overall latency and 41.72% energy improvements by introducing heterogeneous computing over baseline solutions. Overall, our framework guides the design of hybrid network architectures and system architectures for NPU+CIM heterogeneous systems.
more »
« less
Towards Energy-Efficient Spiking Neural Networks: A Robust Hybrid CMOS-Memristive Accelerator
Spiking Neural Networks (SNNs) are energy-efficient artificial neural network models that can carry out data-intensive applications. Energy consumption, latency, and memory bottleneck are some of the major issues that arise in machine learning applications due to their data-demanding nature. Memristor-enabled Computing-In-Memory (CIM) architectures have been able to tackle the memory wall issue, eliminating the energy and time-consuming movement of data. In this work we develop a scalable CIM-based SNN architecture with our fabricated two-layer memristor crossbar array. In addition to having an enhanced heat dissipation capability, our memristor exhibits substantial enhancement of 10% to 66% in design area, power and latency compared to state-of-the-art memristors. This design incorporates an inter-spike interval (ISI) encoding scheme due to its high information density to convert the incoming input signals into spikes. Furthermore, we include a time-to-first-spike (TTFS) based output processing stage for its energy-efficiency to carry out the final classification. With the combination of ISI, CIM and TTFS, this network has a competitive inference speed of 2μs/image and can successfully classify handwritten digits with 2.9mW of power and 2.51pJ energy per spike. The proposed architecture with the ISI encoding scheme can achieve ∼10% higher accuracy than those of other encoding schemes in the MNIST dataset.
more »
« less
- Award ID(s):
- 1750450
- PAR ID:
- 10554653
- Publisher / Repository:
- ACM Journal on Emerging Technologies in Computing Systems
- Date Published:
- Journal Name:
- ACM Journal on Emerging Technologies in Computing Systems
- Volume:
- 20
- Issue:
- 1
- ISSN:
- 1550-4832
- Page Range / eLocation ID:
- 1 to 20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The constant drive to achieve higher performance in deep neural networks (DNNs) has led to the proliferation of very large models. Model training, however, requires intensive computation time and energy. Memristor‐based compute‐in‐memory (CIM) modules can perform vector‐matrix multiplication (VMM) in place and in parallel, and have shown great promises in DNN inference applications. However, CIM‐based model training faces challenges due to non‐linear weight updates, device variations, and low‐precision. In this work, a mixed‐precision training scheme is experimentally implemented to mitigate these effects using a bulk‐switching memristor‐based CIM module. Low‐precision CIM modules are used to accelerate the expensive VMM operations, with high‐precision weight updates accumulated in digital units. Memristor devices are only changed when the accumulated weight update value exceeds a pre‐defined threshold. The proposed scheme is implemented with a system‐onchip of fully integrated analog CIM modules and digital sub‐systems, showing fast convergence of LeNet training to 97.73%. The efficacy of training larger models is evaluated using realistic hardware parameters and verifies that CIM modules can enable efficient mix‐precision DNN training with accuracy comparable to full‐precision software‐trained models. Additionally, models trained on chip are inherently robust to hardware variations, allowing direct mapping to CIM inference chips without additional re‐training.more » « less
-
null (Ed.)The increasingly central role of speech based human computer interaction necessitates on-device, low-latency, low-power, high-accuracy key word spotting (KWS). State-of-the-art accuracies on speech-related tasks have been achieved by long short-term memory (LSTM) neural network (NN) models. Such models are typically computationally intensive because of their heavy use of Matrix vector multiplication (MVM) operations. Compute-in-Memory (CIM) architectures, while well suited to MVM operations, have not seen widespread adoption for LSTMs. In this paper we adapt resistive random access memory based CIM architectures for KWS using LSTMs. We find that a hybrid system composed of CIM cores and digital cores achieves 90% test accuracy on the google speech data set at the cost of 25 uJ/decision. Our optimized architecture uses 5-bit inputs, and analog weights to produce 6-bit outputs. All digital computation are performed with 8-bit precision leading to a 3.7× improvement in computational efficiency compared to equivalent digital systems at that accuracy.more » « less
-
Robust Deep Reservoir Computing through Reliable Memristor with Improved Heat Dissipation Capabilitynull (Ed.)Deep Neural Networks (DNNs), a brain-inspired learning methodology, requires tremendous data for training before performing inference tasks. The recent studies demonstrate a strong positive correlation between the inference accuracy and the size of the DNNs and datasets, which leads to an inevitable demand for large DNNs. However, conventional memory techniques are not adequate to deal with the drastic growth of dataset and neural network size. Recently, a resistive memristor has been widely considered as the next generation memory device owing to its high density and low power consumption. Nevertheless, its high switching resistance variations (cycle-tocycle) restrict its feasibility in deep learning. In this work, a novel memristor configuration with the enhanced heat dissipation feature is fabricated and evaluated to address this challenge. Our experimental results demonstrate our memristor reduces the resistance variation by 30% and the inference accuracy increases correspondingly in a similar range. The accuracy increment is evaluated by our Deep Delay-feed-back (Deep-DFR) reservoir computing model. The design area, power consumption, and latency are reduced by 48%, 42%, and 67%, respectively, compared to the conventional SRAM memory technique (6T). The performance of our memristor is improved at various degrees ( 13%-73%) compared to the state-of-the-art memristors.more » « less
-
The ability to automatically generate a neural network architecture and the corresponding hardware implementation to optimize both accuracy and performance characteristics (latency, power) simultaneously for edge-based Artificial Intelligence (AI) applications is becoming prevalent. As both neural architecture search (NAS) and hardware implementation have ample design space, it is very challenging to integrate with resource-constrained edge computing hardware since the current co-search frameworks take several hundreds of GPU hours to converge. In this paper, we propose SCORCH, a novel neural architecture search and hardware accelerator co-design framework with reinforcement learning to maximize accuracy, and increase energy efficiency and throughput while converging faster. By predicting hyperparameters of neural networks together with hardware resources, we use a reinforcement-based multi-phased controller to explore neural architecture to achieve higher accuracy and hardware performance simultaneously by applying customized dataflows, voltage/frequency scaling, and tunable Network-on-Chip (NoC) hardware parameters. Our simulation results on the CIFAR-10/100 and ImageNet datasets show that SCORCH achieves identical neural network accuracy while achieving 2.6% higher accuracy, and 35.6%, 26.2%, and 65.8% reductions in latency, energy, and area compared with state-of-art co-search frameworks such as DANCE, NANDS, and NASAIC.more » « less
An official website of the United States government

