skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SCORCH: Neural Architecture Search and Hardware Accelerator Co-design with Reinforcement Learning
The ability to automatically generate a neural network architecture and the corresponding hardware implementation to optimize both accuracy and performance characteristics (latency, power) simultaneously for edge-based Artificial Intelligence (AI) applications is becoming prevalent. As both neural architecture search (NAS) and hardware implementation have ample design space, it is very challenging to integrate with resource-constrained edge computing hardware since the current co-search frameworks take several hundreds of GPU hours to converge. In this paper, we propose SCORCH, a novel neural architecture search and hardware accelerator co-design framework with reinforcement learning to maximize accuracy, and increase energy efficiency and throughput while converging faster. By predicting hyperparameters of neural networks together with hardware resources, we use a reinforcement-based multi-phased controller to explore neural architecture to achieve higher accuracy and hardware performance simultaneously by applying customized dataflows, voltage/frequency scaling, and tunable Network-on-Chip (NoC) hardware parameters. Our simulation results on the CIFAR-10/100 and ImageNet datasets show that SCORCH achieves identical neural network accuracy while achieving 2.6% higher accuracy, and 35.6%, 26.2%, and 65.8% reductions in latency, energy, and area compared with state-of-art co-search frameworks such as DANCE, NANDS, and NASAIC.  more » « less
Award ID(s):
2311543 2311544 2324644 2324645 1901192 1936794 1901165
PAR ID:
10508710
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-0927-0
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Location:
San Francisco, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Low-latency and low-power edge AI is crucial for Virtual Reality and Augmented Reality applications. Recent advances demonstrate that hybrid models, combining convolution layers (CNN) and transformers (ViT), often achieve a superior accuracy/performance tradeoff on various computer vision and machine learning (ML) tasks. However, hybrid ML models can present system challenges for latency and energy efficiency due to their diverse nature in dataflow and memory access patterns. In this work, we leverage architecture heterogeneity from Neural Processing Units (NPU) and Compute-In-Memory (CIM) and explore diverse execution schemas to efficiently execute these hybrid models. We introduce H4H-NAS, a two-stage Neural Architecture Search (NAS) framework to automate the design of efficient hybrid CNN/ViT models for heterogeneous edge systems featuring both NPU and CIM. We propose a two-phase incremental supernet training in our NAS framework to resolve gradient conflicts between sampled subnets caused by different types of blocks in a hybrid model search space. Our H4H-NAS approach is also powered by a performance estimator built with NPU performance results measured on real silicon, and CIM performance based on industry IPs. H4H-NAS searches hybrid CNN-ViT models with fine granularity and achieves significant (up to 1.34%) top-1 accuracy improvement on ImageNet. Moreover, results from our algorithm/hardware co-design reveal up to 56.08% overall latency and 41.72% energy improvements by introducing heterogeneous computing over baseline solutions. Overall, our framework guides the design of hybrid network architectures and system architectures for NPU+CIM heterogeneous systems. 
    more » « less
  2. In view of the performance limitations of fully-decoupled designs for neural architectures and accelerators, hardware-software co-design has been emerging to fully reap the benefits of flexible design spaces and optimize neural network performance. Nonetheless, such co-design also enlarges the total search space to practically infinity and presents substantial challenges. While the prior studies have been focusing on improving the search efficiency (e.g., via reinforcement learning), they commonly rely on co-searches over the entire architecture-accelerator design space. In this paper, we propose a semi-decoupled approach to reduce the size of the total design space by orders of magnitude, yet without losing optimality. We first perform neural architecture search to obtain a small set of optimal architectures for one accelerator candidate. Importantly, this is also the set of (close-to-)optimal architectures for other accelerator designs based on the property that neural architectures' ranking orders in terms of inference latency and energy consumption on different accelerator designs are highly similar. Then, instead of considering all the possible architectures, we optimize the accelerator design only in combination with this small set of architectures, thus significantly reducing the total search cost. We validate our approach by conducting experiments on various architecture spaces for accelerator designs with different dataflows. Our results highlight that we can obtain the optimal design by only navigating over the reduced search space. 
    more » « less
  3. Neural architecture search (NAS) is a promising technique to design efficient and high-performance deep neural networks (DNNs). As the performance requirements of ML applications grow continuously, the hardware accelerators start playing a central role in DNN design. This trend makes NAS even more complicated and time-consuming for most real applications. This paper proposes FLASH, a very fast NAS methodology that co-optimizes the DNN accuracy and performance on a real hardware platform. As the main theoretical contribution, we first propose the NN-Degree, an analytical metric to quantify the topological characteristics of DNNs with skip connections (e.g., DenseNets, ResNets, Wide-ResNets, and MobileNets). The newly proposed NN-Degree allows us to do training-free NAS within one second and build an accuracy predictor by training as few as 25 samples out of a vast search space with more than 63 billion configurations. Second, by performing inference on the target hardware, we fine-tune and validate our analytical models to estimate the latency, area, and energy consumption of various DNN architectures while executing standard ML datasets. Third, we construct a hierarchical algorithm based on simplicial homology global optimization (SHGO) to optimize the model-architecture co-design process, while considering the area, latency, and energy consumption of the target hardware. We demonstrate that, compared to the state-of-the-art NAS approaches, our proposed hierarchical SHGO-based algorithm enables more than four orders of magnitude speedup (specifically, the execution time of the proposed algorithm is about 0.1 seconds). Finally, our experimental evaluations show that FLASH is easily transferable to different hardware architectures, thus enabling us to do NAS on a Raspberry Pi-3B processor in less than 3 seconds. 
    more » « less
  4. Network quantization is one of the most hardware friendly techniques to enable the deployment of convolutional neural networks (CNNs) on low-power mobile devices. Recent network quantization techniques quantize each weight kernel in a convolutional layer independently for higher inference accuracy, since the weight kernels in a layer exhibit different variances and hence have different amounts of redundancy. The quantization bitwidth or bit number (QBN) directly decides the inference accuracy, latency, energy and hardware overhead. To effectively reduce the redundancy and accelerate CNN inferences, various weight kernels should be quantized with different QBNs. However, prior works use only one QBN to quantize each convolutional layer or the entire CNN, because the design space of searching a QBN for each weight kernel is too large. The hand-crafted heuristic of the kernel-wise QBN search is so sophisticated that domain experts can obtain only sub-optimal results. It is difficult for even deep reinforcement learning (DRL) DDPG-based agents to find a kernel-wise QBN configuration that can achieve reasonable inference accuracy. In this paper, we propose a hierarchical-DRL-based kernel-wise network quantization technique, AutoQ, to automatically search a QBN for each weight kernel, and choose another QBN for each activation layer. Compared to the models quantized by the state-of-the-art DRL-based schemes, on average, the same models quantized by AutoQ reduce the inference latency by 54.06%, and decrease the inference energy consumption by 50.69%, while achieving the same inference accuracy. 
    more » « less
  5. Large-scale deep neural networks (DNNs) are both compute and memory intensive. As the size of DNNs continues to grow, it is critical to improve the energy efficiency and performance while maintaining accuracy. For DNNs, the model size is an important factor affecting performance, scalability and energy efficiency. Weight pruning achieves good compression ratios but suffers from three drawbacks: 1) the irregular network structure after pruning, which affects performance and throughput; 2) the increased training complexity; and 3) the lack of rigirous guarantee of compression ratio and inference accuracy. To overcome these limitations, this paper proposes CirCNN, a principled approach to represent weights and process neural networks using block-circulant matrices. CirCNN utilizes the Fast Fourier Transform (FFT)-based fast multiplication, simultaneously reducing the computational complexity (both in inference and training) from O(n2) to O(n log n) and the storage complexity from O(n2) to O(n), with negligible accuracy loss. Compared to other approaches, CirCNN is distinct due to its mathematical rigor: the DNNs based on CirCNN can converge to the same "effectiveness" as DNNs without compression. We propose the CirCNN architecture, a universal DNN inference engine that can be implemented in various hardware/software platforms with configurable network architecture (e.g., layer type, size, scales, etc.). In CirCNN architecture: 1) Due to the recursive property, FFT can be used as the key computing kernel, which ensures universal and small-footprint implementations. 2) The compressed but regular network structure avoids the pitfalls of the network pruning and facilitates high performance and throughput with highly pipelined and parallel design. To demonstrate the performance and energy efficiency, we test CirCNN in FPGA, ASIC and embedded processors. Our results show that CirCNN architecture achieves very high energy efficiency and performance with a small hardware footprint. Based on the FPGA implementation and ASIC synthesis results, CirCNN achieves 6 - 102X energy efficiency improvements compared with the best state-of-the-art results. 
    more » « less