skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unitizing Predicates and Reasoning About the Logic of Proofs
This article offers the construct unitizing predicates to name mental actions important for students’ reasoning about logic. To unitize a predicate is to conceptualize (possibly complex or multipart) conditions as a single property that every example has or does not have, thereby partitioning a universal set into examples and nonexamples. This explains the cognitive work that supports students to unify various statements with the same logical form, which is conventionally represented by replacing parts of statements with logical variables p or P(x). Using data from a constructivist teaching experiment with two undergraduate students, we document barriers to unitizing predicates and demonstrate how this activity influences students’ ability to render mathematical statements and proofs as having the same logical structure.  more » « less
Award ID(s):
1954768
PAR ID:
10554663
Author(s) / Creator(s):
;
Publisher / Repository:
National Council of Teachers of Mathematics
Date Published:
Journal Name:
Journal for Research in Mathematics Education
Volume:
55
Issue:
2
ISSN:
0021-8251
Page Range / eLocation ID:
76 to 95
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Based on data from a teaching experiment with two undergraduate students, we propose the unitizing of predicates as a construct to describe how students render various mathematical conditions as predicates such that various theorems have the same logical structure. This may be a challenge when conditions are conjunctions, negative, involve auxiliary objects, or are quantified. We observe that unitizing predicates in theorems and proofs seemed necessary for students in our study to see various theorems as having the same structure. Once they had done so, they reiterated an argument for why contrapositive proofs proved their associated theorems, showing the emergence of logical structure. 
    more » « less
  2. Based on data from a teaching experiment with two undergraduate students, we propose the unitizing of predicates as a construct to describe how students render various mathematical conditions as predicates such that various theorems have the same logical structure. This may be a challenge when conditions are conjunctions, negative, involve auxiliary objects, or are quantified. We observe that unitizing predicates in theorems and proofs seemed necessary for students in our study to see various theorems as having the same structure. Once they had done so, they reiterated an argument for why contrapositive proofs proved their associated theorems, showing the emergence of logical structure. 
    more » « less
  3. Probabilistic couplings are the foundation for many probabilistic relational program logics and arise when relating random sampling statements across two programs. In relational program logics, this manifests as dedicated coupling rules that, e.g., say we may reason as if two sampling statements return the same value. However, this approach fundamentally requires aligning or synchronizing the sampling statements of the two programs which is not always possible. In this paper, we develop Clutch, a higher-order probabilistic relational separation logic that addresses this issue by supporting asynchronous probabilistic couplings. We use Clutch to develop a logical step-indexed logical relation to reason about contextual refinement and equivalence of higher-order programs written in a rich language with a probabilistic choice operator, higher-order local state, and impredicative polymorphism. Finally, we demonstrate our approach on a number of case studies. All the results that appear in the paper have been formalized in the Coq proof assistant using the Coquelicot library and the Iris separation logic framework. 
    more » « less
  4. This theoretical article explores the affordances and challenges of Euler diagrams as tools for supporting undergraduate introduction-to-proof students to make sense of, and reason about, logical implications. To theoretically frame students’ meaning making with Euler diagrams, we introduce the notion of logico-spatial linked structuring (or LSLS). We argue that students’ use of Euler diagrams as representations of logical statements entails a conceptual linking between spatial and non-spatial representations, and the LSLS framework provides a tool for modeling this conceptual linking. Moreover, from our Piagetian epistemological perspective, reasoning with Euler diagrams entails engaging in spatial mental operations and making a logical conclusion from the result. We illustrate the utility of the LSLS framework through examples with two undergraduate students as they reasoned about the truth of the converse and contrapositive of a given logical implication, and we identify specific spatial operations that they used and coordinated in their problem solving. 
    more » « less
  5. Karunakaran, S. S.; Reed, Z.; Higgins, A. (Ed.)
    Future mathematics teachers must be able to interpret a wide range of mathematical statements, in particular conditional statements. Literature shows that even when students are familiar with conditional statements and equivalence to the contrapositive, identifying other equivalent and non-equivalent forms can be challenging. As a part of a larger grant to enhance and study prospective secondary teachers’ (PSTs’) mathematical knowledge for teaching proof, we analyzed data from 26 PSTs working on a task that required rewriting a conditional statement in several different forms and then determining those that were equivalent to the original statement. We identified three key strategies used to make sense of the various forms of conditional statements and to identify equivalent and non-equivalent forms: meaning making, comparing truth-values and comparing to known syntactic forms. The PSTs relied both on semantic meaning of the statements and on their formal logical knowledge to make their judgments. 
    more » « less