skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FFCL: Forward-Forward Net with Cortical Loops, Training and Inference on Edge Without Backpropogation
The Forward-Forward Learning (FFL) algorithm is a recently proposed solution for training neural networks without needing memory-intensive backpropagation. During training, labels accompany input data, classifying them as positive or negative inputs. Each layer learns its response to these inputs independently. In this study, we enhance the FFL with the following contributions: 1) We optimize label processing by segregating label and feature forwarding between layers, enhancing learning performance. 2) By revising label integration, we enhance the inference process, reduce computational complexity, and improve performance. 3) We introduce feedback loops akin to cortical loops in the brain, where information cycles through and returns to earlier neurons, enabling layers to combine complex features from previous layers with lower-level features, enhancing learning efficiency.  more » « less
Award ID(s):
2233893
PAR ID:
10554696
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400706059
Page Range / eLocation ID:
626 to 632
Subject(s) / Keyword(s):
ML training, training without backpropogation, training on edge
Format(s):
Medium: X
Location:
Clearwater FL USA
Sponsoring Org:
National Science Foundation
More Like this
  1. The growing computational demands of deep learning have driven interest in analog neural networks using resistive memory and silicon photonics. However, these technologies face inherent limitations in computing parallelism when used independently. Photonic phase-change memory (PCM), which integrates photonics with PCM, overcomes these constraints by enabling simultaneous processing of multiple inputs encoded on different wavelengths, significantly enhancing parallel computation for deep neural network (DNN) inference and training. This paper presents MERIT, a sustainable DNN accelerator that capitalizes on the non-volatility of resistive memory and the high operating speed of photonic devices. MERIT enables seamless inference and training by loading weight kernels into photonic PCM arrays and selectively supplying light encoded with input features for the forward pass and loss gradients for the backward pass. We compare MERIT with state-of-the-art digital and analog DNN accelerators including TPU, DEAP, and PTC. Simulation results demonstrate that MERIT reduces execution time by 68% and energy consumption by 64% for inference, and reduces execution time by 79% and energy consumption by 84% for training. 
    more » « less
  2. The first successful detection of gravitational waves by ground-based observatories, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO), marked a breakthrough in our comprehension of the Universe. However, due to the unprecedented sensitivity required to make such observations, gravitational-wave detectors also capture disruptive noise sources called glitches, which can potentially be confused for or mask gravitational-wave signals. To address this problem, a community-science project, Gravity Spy, incorporates human insight and machine learning to classify glitches in LIGO data. The machine-learning classifier, integrated into the project since 2017, has evolved over time to accommodate increasing numbers of glitch classes. Despite its success, limitations have arisen in the ongoing LIGO fourth observing run (O4) due to the architecture's simplicity, which led to poor generalization and inability to handle multi-time window inputs effectively. We propose an advanced classifier for O4 glitches. Using data from previous observing runs, we evaluate different fusion strategies for multi-time window inputs, using label smoothing to counter noisy labels, and enhancing interpretability through attention module-generated weights. Our new O4 classifier shows improved performance, and will enhance glitch classification, aiding in the ongoing exploration of gravitational-wave phenomena. 
    more » « less
  3. Synaptic unreliability was shown to be a robust and sufficient mechanism for inducing the stochasticity in biological and artificial neural network models. Previous work demonstrated multiplicative noise (also called dropconnect) as a powerful regularizer during training. Here, we show that always-on stochasticity at networks connections is a sufficient resource for deep learning machines when combined with simple threshold non-linearities. Furthermore, the resulting activity function exhibits a self-normalizing property that reflects a recently proposed “Weight Normalization” technique, itself fulfilling many of the features of batch normalization in an online fashion. Normalization of activities during training can speed up convergence by preventing so-called internal covariate shift caused by changes in the distribution of inputs as the parameters of the previous layers are trained. Collectively, our findings can improve performance of deep learning machines with fixed point representations and argue in favor of stochastic nanodevices as primitives for efficient deep learning machines with online and embedded learning capabilities. 
    more » « less
  4. Given raster imagery features and imperfect vector training labels with registration uncertainty, this paper studies a deep learning framework that can quantify and reduce the registration uncertainty of training labels as well as train neural network parameters simultaneously. The problem is important in broad applications such as streamline classification on Earth imagery or tissue segmentation on medical imagery, whereby annotating precise vector labels is expensive and time-consuming. However, the problem is challenging due to the gap between the vector representation of class labels and the raster representation of image features and the need for training neural networks with uncertain label locations. Existing research on uncertain training labels often focuses on uncertainty in label class semantics or characterizes label registration uncertainty at the pixel level (not contiguous vectors). To fill the gap, this paper proposes a novel learning framework that explicitly quantifies vector labels' registration uncertainty. We propose a registration-uncertainty-aware loss function and design an iterative uncertainty reduction algorithm by re-estimating the posterior of true vector label locations distribution based on a Gaussian process. Evaluations on real-world datasets in National Hydrography Dataset refinement show that the proposed approach significantly outperforms several baselines in the registration uncertainty estimations performance and classification performance. 
    more » « less
  5. Multi-label annotation is challenging since a large amount of well-labeled training data are required to achieve promising performance. However, providing such data is expensive while unlabeled data are widely available. To this end, we propose a novel Adaptive Graph Guided Embedding (AG2E) approach for multi-label annotation in a semi-supervised fashion, which utilizes limited labeled data associating with large-scale unlabeled data to facilitate learning performance. Specifically, a multi-label propagation scheme and an effective embedding are jointly learned to seek a latent space where unlabeled instances tend to be well assigned multiple labels. Furthermore, a locality structure regularizer is designed to preserve the intrinsic structure and enhance the multi-label annotation. We evaluate our model in both conventional multi-label learning and zero-shot learning scenario. Experimental results demonstrate that our approach outperforms other compared state-of-the-art methods. 
    more » « less