skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deriving general principles of agroecosystem multifunctionality with the Diverse Rotations Improve Valuable Ecosystem Services (DRIVES) network
Abstract Long‐term agricultural field experiments (LTFEs) have been conducted for nearly 150 years. Yet lack of coordination means that synthesis across such experiments remains rare, constituting a missed opportunity for deriving general principles of agroecosystem structure and function. Here, we introduce the Diverse Rotations Improve Valuable Ecosystem Services (DRIVES) project, which uses legacy data from North American LTFEs to address research questions about the multifunctionality of agriculture. The DRIVES Project is a network of researchers who have compiled a database of primary (i.e., observations) and secondary (i.e., transformed observations or modeling results) data from participating sites. It comprises 21 LTFEs that evaluate how crop rotational diversity impacts cropping system performance. The Network consists of United States Department of Agriculture, university, and International Maize and Wheat Improvement Center scientists (20 people) who manage and collect primary data from LTFEs and a core team (nine people) who organize the network, curate network data, and synthesize cross‐network findings. As of 2024, the DRIVES Project database contains 495 site‐years of crop yields, daily weather, soil analysis, and management information. The DRIVES database is findable, accessible, interoperable, and reusable, which allows integration with other public datasets. Initial research has focused on how rotational diversity impacts resilience in the face of adverse weather, nutritional quality, and economic feasibility. Our collaborative approach in handling LTFE data has established a model for data organization that facilitates broader synthesis studies. We openly invite other sites to join the DRIVES network and share their data.  more » « less
Award ID(s):
2311306
PAR ID:
10554945
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
ASA-CSSA-SSSA
Date Published:
Journal Name:
Agronomy Journal
Volume:
116
Issue:
6
ISSN:
0002-1962
Page Range / eLocation ID:
2934 to 2951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work was conducted by the Diverse Rotations Improve Valuable Ecosystem Services (DRIVES) project, based in the USDA-ARS Sustainable Agricultural Systems Lab in Beltsville, MD. The DRIVES team compiled a database of 20-plus long-term cropping systems experiments in North America in order to conduct cross-site research. This repository contains all scripts from our first research paper from the DRIVES database: "Rotational complexity increases cropping system output under poorer growing conditions," published in One Earth (in press). This analysis uses crop yield and experimental design data from the DRIVES database and public data sources for crop prices and inflation. This repository includes limited datasets derived from public sources or lacking connection to site IDs. We do not have permission to share the full primary dataset, but can provide data upon request with permission from site contacts.The scripts show all data setup, analysis, and visualization steps used to investigate how crop rotation diversity (defined by rotation length and the number of species) impacts productivity of whole rotations and component crops under varying growing conditions. We used Bayesian multilevel modeling fit to data from 20 long-term cropping systems datasets in North America (434 site-years, 36,000 observations). Rotation- and crop-level productivity were quantified as dollar output, using price coefficients derived from National Agriculture Statistics Service (NASS) price data (included in repository). Growing condtions were quantified using an Environmental Index calculated from site-year average output. Bayesian multilevel models were implemented using the 'brms' R package, which is a wrapper for Stan. Descriptions of all files are included in README.pdf. 
    more » « less
  2. Gaglio, Mattias (Ed.)
    Ecological theory on diversity suggests that agriculture requires sufficient biodiversity, ecological function, and critical ecosystem services to remain sustainable and resilient. As such, research related to the effect of ecosystem services and diversity on crop yields has increased significantly in the past decade. One such study by Dainese and colleagues that presented a global synthesis of a compiled database of 1,475 crop experiments related to pollination and pest control ecosystem services and crop yields quickly garnered attention in the literature with more than 540 citations since its publication in 2019. Given the strong influence of this study on the research on diversity and agricultural production, we conduct a reanalysis on the publicly available dataset from the global synthesis study to test the robustness of findings to modeling approach and assumptions. In our reanalysis we apply ordinary least squares regression methods rather than Bayesian path analysis to the same data to examine the robustness of observed field-scale landscape diversity-ecosystem services-crop yield relationships. The result of our reanalysis supports the findings of Dainese and colleagues, illustrating the robustness of findings that suggest that increasing landscape simplicity is associated with lower rates of pollination and pest control ecosystem service provisioning and lower crop yields. However, our analyses also suggest that provisioning of pollination and pest control services account for only a small fraction of the total effect of landscape simplicity on crop yields. Furthermore, we find that management and soil health may mediate the effects of landscape simplicity on ecosystem services and crop yields. While our results complement previous findings for landscape simplicity and ecosystem services, they also indicate that above and below ground ecosystem services are not mutually exclusive but concurrently contribute to support crop production in agriculture. 
    more » « less
  3. abstract Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change. 
    more » « less
  4. Climate anomalies and changes have complex and critical impacts on agriculture. Given global warming, the scientific community has dramatically increased research on these impacts. During 1996–2022, over 3,000 peer-reviewed papers in the Web of Science Core Collection database have investigated the fields. This study conducted a bibliometric analysis of these papers for systematic mapping and inductive understanding to comprehensively review the research’s status, focus, network, and funding. After almost 30 years, the research is now centered in quantifying climate impacts on crop yields and agriculture productivity while seeking effective adaptation solutions. The hot keywords recently emerged include poverty, food security, water resource, climate service, climate-smart agriculture, sustainability, and policy. They suggest increasing concerns on global food and water shortage and pressing needs for action to adapt to climate change and sustain agricultural productivity. Given the uncertainty of climate change and the complexity of agriculture systems, most current studies are interdisciplinary research combining various agricultural fields with climate, environmental, and socioeconomic sciences. The United States, as the world’s leading food commodity producer, has the most diverse funding agencies and provides the largest number of awards to support the research. Future priority research should take the coupled earth system approach with the food-energy-water nexus principles to provide effective, actionable decision supports at local-regional scales to sustain national agricultural productivity and quantify climate-smart agricultural practices to mitigate global warming. 
    more » « less
  5. Louisiana is one of the most hazard-prone states in the U.S., and many of its people are engaged directly or indirectly in agricultural activities that are impacted by an array of weather hazards. However, most hazard impact research on agriculture to date, for Louisiana and elsewhere, has focused on floods and hurricanes. This research develops a method of future crop loss risk assessment due to droughts, extreme low and high temperatures, hail, lightning, and tornadoes, using Louisiana as a case study. This approach improves future crop risk assessment by incorporating historical crop loss, historical and modeled future hazard intensity, cropland extent, population, consumer demand, cropping intensity, and technological development as predictors of future risk. The majority of crop activities occurred and will continue to occur in south-central and northeastern Louisiana along the river basins. Despite the fact that cropland is decreasing across most of the state, weather impacts to cropland are anticipated to increase substantially by 2050. Drought is by far the costliest among the six hazards, accounting for $56.1 million of $59.2 million (∼95%) in 2050-projected crop loss, followed by extreme cold ($1.4 million), extreme heat ($1.0 million), tornadoes ($0.4 million), hail ($0.2 million), and lightning ($0.05 million), respectively. These findings will assist decision-makers to minimize risk and enhance agricultural resilience to future weather hazards, thereby strengthening this economically-important industry in Louisiana and enhancing food security. 
    more » « less