skip to main content

Title: Cross-Site Comparisons of Dryland Ecosystem Response to Climate Change in the US Long-Term Ecological Research Network

Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.

; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
2025166 1832042 2025849 1832016 1831944
Publication Date:
Journal Name:
Page Range or eLocation-ID:
p. 889-907
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. abstract

    The marine coastal region makes up just 10% of the total area of the global ocean but contributes nearly 20% of its total primary production and over 80% of fisheries landings. Unicellular phytoplankton dominate primary production. Climate variability has had impacts on various marine ecosystems, but most sites are just approaching the age at which ecological responses to longer term, unidirectional climate trends might be distinguished. All five marine pelagic sites in the US Long Term Ecological Research (LTER) network are experiencing warming trends in surface air temperature. The marine physical system is responding at all sites with increasing mixed layer temperatures and decreasing depth and with declining sea ice cover at the two polar sites. Their ecological responses are more varied. Some sites show multiple population or ecosystem changes, whereas, at others, changes have not been detected, either because more time is needed or because they are not being measured.

  2. Dryland riparian woodlands are considered to be locally buffered from droughts by shallow and stable groundwater levels. However, climate change is causing more frequent and severe drought events, accompanied by warmer temperatures, collectively threatening the persistence of these groundwater dependent ecosystems through a combination of increasing evaporative demand and decreasing groundwater supply. We conducted a dendro-isotopic analysis of radial growth and seasonal (semi-annual) carbon isotope discrimination (Δ13C) to investigate the response of riparian cottonwood stands to the unprecedented California-wide drought from 2012 to 2019, along the largest remaining free-flowing river in Southern California. Our goals were to identify principal drivers and indicators of drought stress for dryland riparian woodlands, determine their thresholds of tolerance to hydroclimatic stressors, and ultimately assess their vulnerability to climate change. Riparian trees were highly responsive to drought conditions along the river, exhibiting suppressed growth and strong stomatal closure (inferred from reduced Δ13C) during peak drought years. However, patterns of radial growth and Δ13C were quite variable among sites that differed in climatic conditions and rate of groundwater decline. We show that the rate of groundwater decline, as opposed to climate factors, was the primary driver of site differences in drought stress, and trees showed greatermore »sensitivity to temperature at sites subjected to faster groundwater decline. Across sites, higher correlation between radial growth and Δ13C for individual trees, and higher inter-correlation of Δ13C among trees were indicative of greater drought stress. Trees showed a threshold of tolerance to groundwater decline at 0.5 m year−1 beyond which drought stress became increasingly evident and severe. For sites that exceeded this threshold, peak physiological stress occurred when total groundwater recession exceeded 3 m. These findings indicate that drought-induced groundwater decline associated with more extreme droughts is a primary threat to dryland riparian woodlands and increases their susceptibility to projected warmer temperatures.« less
  3. As one of the most sensitive areas to climate change, drylands cover ~40% of the Earth’s terrestrial land surface and host more than 38% of the global population. Meanwhile, their response to climate change and variability carries large uncertainties as induced by background climate, topography, and land cover composition; but there is a lack of intercomparison of different dryland ecosystems. In this study, we compare the changing climate and corresponding responses of major natural vegetation cover types in Xinjiang and Arizona, two typical drylands with similar landscapes in Asia and North America. Long-term (2002–2019) quasi-8-day datasets of daily precipitation, daily mean temperature, and Normalized Difference Vegetation Index (NDVI) were constructed based on station observations and remote sensing products. We found that much of Xinjiang experienced warming and wetting trends (although not co-located) over the past 18 years. In contrast, Arizona was dominated by warming with insignificant wetting or drying trends. Significant greening trends were observed in most parts of both study areas, while the increasing rate of NDVI anomalies was relatively higher in Xinjiang, jointly contributed by its colder and drier conditions. Significant degradation of vegetation growth (especially for shrubland) was observed over 18.8% of Arizona due to warming. Ourmore »results suggest that responses of similar natural vegetation types under changing climate can be diversified, as controlled by temperature and moisture in areas with different aridity.« less
  4. abstract In this article marking the 40th anniversary of the US National Science Foundation's Long Term Ecological Research (LTER) Network, we describe how a long-term ecological research perspective facilitates insights into an ecosystem's response to climate change. At all 28 LTER sites, from the Arctic to Antarctica, air temperature and moisture variability have increased since 1930, with increased disturbance frequency and severity and unprecedented disturbance types. LTER research documents the responses to these changes, including altered primary production, enhanced cycling of organic and inorganic matter, and changes in populations and communities. Although some responses are shared among diverse ecosystems, most are unique, involving region-specific drivers of change, interactions among multiple climate change drivers, and interactions with other human activities. Ecosystem responses to climate change are just beginning to emerge, and as climate change accelerates, long-term ecological research is crucial to understand, mitigate, and adapt to ecosystem responses to climate change.
  5. Abstract Despite their sparse vegetation, dryland regions exert a huge influence over global biogeochemical cycles because they cover more than 40% of the world surface (Schimel 2010 Science 327 418–9). It is thought that drylands dominate the inter-annual variability (IAV) and long-term trend in the global carbon (C) cycle (Poulter et al 2014 Nature 509 600–3, Ahlstrom et al 2015 Science 348 895–9, Zhang et al 2018 Glob. Change Biol . 24 3954–68). Projections of the global land C sink therefore rely on accurate representation of dryland C cycle processes; however, the dynamic global vegetation models (DGVMs) used in future projections have rarely been evaluated against dryland C flux data. Here, we carried out an evaluation of 14 DGVMs (TRENDY v7) against net ecosystem exchange (NEE) data from 12 dryland flux sites in the southwestern US encompassing a range of ecosystem types (forests, shrub- and grasslands). We find that all the models underestimate both mean annual C uptake/release as well as the magnitude of NEE IAV, suggesting that improvements in representing dryland regions may improve global C cycle projections. Across all models, the sensitivity and timing of ecosystem C uptake to plant available moisture was at fault. Spring biases inmore »gross primary production (GPP) dominate the underestimate of mean annual NEE, whereas models’ lack of GPP response to water availability in both spring and summer monsoon are responsible for inability to capture NEE IAV. Errors in GPP moisture sensitivity at high elevation forested sites were more prominent during the spring, while errors at the low elevation shrub and grass-dominated sites were more important during the monsoon. We propose a range of hypotheses for why model GPP does not respond sufficiently to changing water availability that can serve as a guide for future dryland DGVM developments. Our analysis suggests that improvements in modeling C cycle processes across more than a quarter of the Earth’s land surface could be achieved by addressing the moisture sensitivity of dryland C uptake.« less