skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Code and limited data for: Rotational complexity increases cropping system output under poorer growing conditions
This work was conducted by the Diverse Rotations Improve Valuable Ecosystem Services (DRIVES) project, based in the USDA-ARS Sustainable Agricultural Systems Lab in Beltsville, MD. The DRIVES team compiled a database of 20-plus long-term cropping systems experiments in North America in order to conduct cross-site research. This repository contains all scripts from our first research paper from the DRIVES database: "Rotational complexity increases cropping system output under poorer growing conditions," published in One Earth (in press). This analysis uses crop yield and experimental design data from the DRIVES database and public data sources for crop prices and inflation. This repository includes limited datasets derived from public sources or lacking connection to site IDs. We do not have permission to share the full primary dataset, but can provide data upon request with permission from site contacts.The scripts show all data setup, analysis, and visualization steps used to investigate how crop rotation diversity (defined by rotation length and the number of species) impacts productivity of whole rotations and component crops under varying growing conditions. We used Bayesian multilevel modeling fit to data from 20 long-term cropping systems datasets in North America (434 site-years, 36,000 observations). Rotation- and crop-level productivity were quantified as dollar output, using price coefficients derived from National Agriculture Statistics Service (NASS) price data (included in repository). Growing condtions were quantified using an Environmental Index calculated from site-year average output. Bayesian multilevel models were implemented using the 'brms' R package, which is a wrapper for Stan. Descriptions of all files are included in README.pdf.  more » « less
Award ID(s):
2311306
PAR ID:
10554925
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Ag Data Commons
Date Published:
Subject(s) / Keyword(s):
Agricultural, veterinary and food sciences Agriculture, land and farm management Crop and pasture production Sustainable agricultural development Agricultural systems analysis and modelling Agronomy Agro-ecosystem function and prediction
Format(s):
Medium: X Size: 1965773 Bytes
Size(s):
1965773 Bytes
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Long‐term agricultural field experiments (LTFEs) have been conducted for nearly 150 years. Yet lack of coordination means that synthesis across such experiments remains rare, constituting a missed opportunity for deriving general principles of agroecosystem structure and function. Here, we introduce the Diverse Rotations Improve Valuable Ecosystem Services (DRIVES) project, which uses legacy data from North American LTFEs to address research questions about the multifunctionality of agriculture. The DRIVES Project is a network of researchers who have compiled a database of primary (i.e., observations) and secondary (i.e., transformed observations or modeling results) data from participating sites. It comprises 21 LTFEs that evaluate how crop rotational diversity impacts cropping system performance. The Network consists of United States Department of Agriculture, university, and International Maize and Wheat Improvement Center scientists (20 people) who manage and collect primary data from LTFEs and a core team (nine people) who organize the network, curate network data, and synthesize cross‐network findings. As of 2024, the DRIVES Project database contains 495 site‐years of crop yields, daily weather, soil analysis, and management information. The DRIVES database is findable, accessible, interoperable, and reusable, which allows integration with other public datasets. Initial research has focused on how rotational diversity impacts resilience in the face of adverse weather, nutritional quality, and economic feasibility. Our collaborative approach in handling LTFE data has established a model for data organization that facilitates broader synthesis studies. We openly invite other sites to join the DRIVES network and share their data. 
    more » « less
  2. null (Ed.)
    Climate change will ultimately result in higher surface temperature and more variable precipitation, negatively affecting agricultural productivity. To sustain the agricultural production in the face of climate change, adaptive agricultural management or best management practices (BMPs) are needed. The currently practiced BMPs include crop rotation, early planting, conservation tillage, cover crops, effective fertilizer use, and so on. This research investigated the agricultural production of BMPs in response to climate change for a Hydrologic Unit Code12 sub-watershed of Choctawhatchee Watershed in Alabama, USA. The dominating soil type of this region was sandy loam and loamy sand soil. Agricultural Production Systems sIMulator and Cropping Systems Simulation Model were used to estimate the agricultural production. Representative Concentration Pathway (RCP) 4.5 and RCP8.5 that projected a temperature increase of 2.3℃ and 4.7℃ were used as climate scenarios. The research demonstrated that crop rotation had positive response to climate change. With peanuts in the rotation, a production increase of 105% was observed for cotton. There was no consistent impact on crop yields by early planting. With selected peanut-cotton rotations, 50% reduced nitrogen fertilizer use was observed to achieve comparable crop yields. In response to climate change, crop rotation with legume incorporation is thus suggested, which increased crop production and reduced fertilizer use. 
    more » « less
  3. Crop rotations are known to improve soil health by replenishing lost nutrients, increasing organic matter, improving microbial activity, and reducing disease risk and weed pressure. We characterized the spatial distribution of crops and dominant field-scale cropping sequences from 2008 to 2019 for the Wisconsin Central Sands (WCS) region, a major producer of potato and vegetables in the U.S. The dominant two- and three-year rotations were determined, with an additional focus on assessing regional potato rotation management. Our results suggest corn and soybean are the two most widely planted crops, occurring on 67% and 36% of all agricultural land at least once during the study period. The most frequent two- and three-year crop rotations include corn, soybean, alfalfa, sweet corn, potato, and beans, with continuous corn being the most dominant two- and three-year rotations (13.2% and 8.5% of agricultural land, respectively). While four- and five-year rotations for potato are recommended to combat pest and disease pressure, 23.2% and 65.9% of potato fields returned to that crop in rotation after two and three years, respectively. Furthermore, 5.6% of potato fields were planted continuously with that crop. Given potato’s high nitrogen (N) fertilizer requirements, the prevalence of sandy soils, and ongoing water quality issues, adopting more widespread use of four- or five-year rotations of potato with crops that require zero or less N fertilizer could reduce groundwater nitrate concentrations and improve water quality. 
    more » « less
  4. Michael Kaiser (Ed.)
    By influencing soil organic carbon (SOC), cover crops play a key role in shaping soil health and hence the system's long‐term sustainability. However, the magnitude by which cover crops impacts SOC depends on multiple factors, including soil type, climate, crop rotation, tillage type, cover crop growth, and years under management. To elucidate how these multiple factors influence the relative impact of cover crops on SOC, we conducted a meta‐analysis on the impacts of cover crops within rotations that included corn (Zea maysL.) on SOC accumulation. Information on climatic conditions, soil characteristics, management, and cover crop performance was extracted, resulting in 198 paired comparisons from 61 peer‐reviewed studies. Over the course of each study, cover crops on average increased SOC by 7.3% (95% CI, 4.9%–9.6%). Furthermore, the impact of cover crop–induced increases in percent change SOC was evaluated across soil textures, cover crop types, crop rotations, biomass amounts, cover crop durations, tillage practices, and climatic zones. Our results suggest that current cover crop–based corn production systems are sequestering 5.5 million Mg of SOC per year in the United States and have the potential to sequester 175 million Mg SOC per year globally. These findings can be used to improve carbon footprint calculations and develop science‐based policy recommendations. Taken altogether, cover cropping is a promising strategy to sequester atmospheric C and hence make corn production systems more resilient to changing climates. 
    more » « less
  5. Abstract The Kellogg Biological Station Long‐term Agroecosystem Research site (KBS LTAR) joined the national LTAR network in 2015 to represent a northeast portion of the North Central Region, extending across 76,000 km2of southern Michigan and northern Indiana. Regional cropping systems are dominated by corn (Zea mays)–soybean (Glycine max) rotations managed with conventional tillage, industry‐average rates of fertilizer and pesticide inputs uniformly applied, few cover crops, and little animal integration. In 2020, KBS LTAR initiated the Aspirational Cropping System Experiment as part of the LTAR Common Experiment, a co‐production model wherein stakeholders and researchers collaborate to advance transformative change in agriculture. The Aspirational (ASP) cropping system treatment, designed by a team of agronomists, farmers, scientists, and other stakeholders, is a five‐crop rotation of corn, soybean, winter wheat (Triticum aestivum), winter canola (Brassicus napus), and a diverse forage mix. All phases are managed with continuous no‐till, variable rate fertilizer inputs, and integrated pest management to provide benefits related to economic returns, water quality, greenhouse gas mitigation, soil health, biodiversity, and social well‐being. Cover crops follow corn and winter wheat, with fall‐planted crops in the rotation providing winter cover in other years. The experiment is replicated with all rotation phases at both the plot and field scales and with perennial prairie strips in consistently low‐producing areas of ASP fields. The prevailing practice (or Business as usual [BAU]) treatment mirrors regional prevailing practices as revealed by farmer surveys. Stakeholders and researchers evaluate the success of the ASP and BAU systems annually and implement management changes on a 5‐year cycle. 
    more » « less