skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2025

Title: Aligning Audience Needs with Scientists’ Information in the Complex Harmful Algal Bloom Outreach to Engagement Continuum
Algae, an important foundation of aquatic ecosystems, can become a nuisance or harmful when it grows in excess. Many government agencies have a role in monitoring, responding to, and confirming a harmful algal bloom (HAB). HAB scientists have important information to share, however, given the complexities of HABs, which often involve decoupled drivers from observed impacts, presents challenges to outreach and engagement. Understanding key audience information needs can help scientists prioritize key science communication and engagement opportunities to maximize the impact of such efforts. Scientists may need additional science communication training or support for scientist-community partnerships. This will be evermore important into the future with the likely range expansion of HABs due to climate change.  more » « less
Award ID(s):
1840715
PAR ID:
10555047
Author(s) / Creator(s):
; ;
Publisher / Repository:
Universities Council on Water Resources
Date Published:
Format(s):
Medium: X
Location:
Universities Council on Water Resources
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Algae, an important foundation of aquatic ecosystems, can become a nuisance or harmful when it grows in excess. Many government agencies have a role in monitoring, responding to, and confirming a harmful algal bloom (HAB). HAB scientists have important information to share, however, given the complexities of HABs, which often involve decoupled drivers from observed impacts, presents challenges to outreach and engagement. Understanding key audience information needs can help scientists prioritize key science communication and engagement opportunities to maximize the impact of such efforts. Scientists may need additional science communication training or support for scientist‐community partnerships. This will be evermore important into the future with the likely range expansion of HABs due to climate change. 
    more » « less
  2. Abstract The worldwide proliferation of harmful algal blooms (HABs) both in freshwater and marine ecosystems make understanding and predicting their occurrence urgent. Trait‐based approaches, where the focus is on functional traits, have been successful in explaining community structure and dynamics in diverse ecosystems but have not been applied extensively to HABs. The existing trait compilations suggest that HAB taxa differ from non HAB taxa in key traits that determine their responses to major environmental drivers. Multi‐trait comparisons between HAB‐forming and other phytoplankton taxa, as well as within the HAB groups to characterize interspecific and intraspecific differences will help better define ecological niches of different HAB taxa, develop trait‐based mechanistic models, and better identify environmental conditions that would likely lead to HABs. Building databases of HAB traits and using them in diverse statistical and mechanistic models will increase our ability to predict the HAB occurrence, composition, and severity under changing conditions, including the anthropogenic global change. 
    more » « less
  3. Moran, Mary Ann (Ed.)
    ABSTRACT The mechanisms driving cyanobacterial harmful algal blooms (HABs) like those caused by Microcystis aeruginosa remain elusive, but improved defense against viral predation has been implicated for success in eutrophic environments. Our genus-level analyses of 139,023 genomes revealed that HAB-forming cyanobacteria carry vastly more restriction modification systems per genome (RMPG) than nearly all other prokaryotic genera, suggesting that viral defense is a cornerstone of their ecological success. In contrast, picocyanobacteria that numerically dominate nutrient-poor systems have the fewest RMPG within the phylum Cyanobacteria . We used classic resource competition models to explore the hypothesis that nutrient enrichments drive ecological selection for high RMPG due to increased host-phage contact rate. These classic models, agnostic to the mechanism of defense, explain how nutrient loading can select for increased RMPG but, importantly, fail to explain the extreme accumulation of these defense systems. However, extreme accumulation of RMPG can be achieved in a novel “memory” model that accounts for a unique activity of restriction modification systems: the accidental methylation of viral DNA by the methyltransferase. The methylated virus “remembers” the RM defenses of its former host and can evade these defenses if they are present in the next host. This viral memory leads to continual RM system devaluation; RMs accumulate extensively because the benefit of each addition is diminished. Our modeling leads to the hypothesis that nutrient loading and virion methylation drive the extreme accumulation of RMPG in HAB-forming cyanobacteria. Finally, our models suggest that hosts with different RMPG values can coexist when hosts have unique sets of RM systems. IMPORTANCE Harmful algal blooms (HABs), caused by cyanobacteria like Microcystis aeruginosa , are a global threat to water quality and use across the planet. Researchers have agreed that nutrient loading is a major contributor to HAB persistence. While we may understand the environmental conditions that cause HABs, we still struggle in identifying the mechanisms that explain why these organisms have a competitive edge against other, less ecologically hazardous organisms. Our interdisciplinary approach in microbiology, mathematical population modeling, and genomics allows us to use nearly 70 years of research in restriction modification systems to show that HAB-forming cyanobacteria are exceptional in their ability to defend against viruses, and this capacity is intimately tied to nutrient loading. Our hypothesis suggests that defense against viral predation is a fundamental pillar of cyanobacterial ecological strategy and an important contributor to HAB dynamics. 
    more » « less
  4. Microalgae and cyanobacteria are tiny, microscopic plant-like organisms that float in the water and grow using nutrients from the water, energy from the sun and carbon dioxide gas from the air. Most microalgae and cyanobacteria are helpful because, like grass for cows on land, they provide food for aquatic animals. However, some microalgae and cyanobacteria are poisonous and when large numbers of them occur, they are called harmful algal blooms, or HABs for short. HABs can poison both humans and animals through the food they eat, the water they drink, and even the air they breathe. HABs are increasing within lakes, rivers, oceans, and estuaries worldwide because of pollution and climate change. This article will tell you about HABs in San Francisco Estuary, USA: who they are, what they look like, why they occur, how they affect plants, animals and people, and things you can do as a HAB warrior to stay safe and prevent their spread. 
    more » « less
  5. Harmful algal blooms (HABs) present an emerging threat to human and ecosystem health in the Alaskan Arctic. Two HAB toxins are of concern in the region: saxitoxins (STXs), a family of compounds produced by the dinoflagellate Alexandrium catenella, and domoic acid (DA), produced by multiple species in the diatom genus Pseudo-nitzschia. These potent neurotoxins cause paralytic and amnesic shellfish poisoning, respectively, in humans, and can accumulate in marine organisms through food web transfer, causing illness and mortality among a suite of wildlife species. With pronounced warming in the Arctic, along with enhanced transport of cells from southern waters, there is significant potential for more frequent and larger HABs of both types. STXs and DA have been detected in the tissues of a range of marine organisms in the region, many of which are important food resources for local residents. The unique nature of the Alaskan Arctic, including difficult logistical access, lack of response infrastructure, and reliance of coastal populations on the noncommercial acquisition of marine resources for nutritional, cultural, and economic well-being, poses urgent and significant challenges as this region warms and the potential for impacts from HABs expands. 
    more » « less