skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: miR-127/3p Inhibits Cell Migration in Lung Adenocarcinoma Under Hypoxic and Normal Oxygen Conditions
MicroRNAs are small noncoding nucleotides that serve as intracellular and extracellular signaling molecules. A previous collaboration found miR-127/3p circulation in the blood of breast cancer patients correlated with improved patient recovery and prognosis. While this study exclusively focused on breast cancer patients, data mining of the TCGA databases indicated that miR-127/3p may be positively associated with outcomes in other cancer types. In our study, A549 lung adenocarcinoma cells were transfected with miR-127/3p using Cell Block protocols produced by the Cell Biology Education Consortium (CBEC). After transfection, cell migration (scratch/wound healing) assays were used to determine the role miR-127/3p plays in the tumor microenvironment. To mimic and test this environment, transfected cells were incubated in normal oxygen (normoxic) and low oxygen (hypoxic) environments. We found that miR-127/3p inhibited cell migration in both normal oxygen and hypoxic environments. These results help elucidate the role miR-127/3p plays in the prevention of metastasis and further highlight its potential as a positive biomarker.  more » « less
Award ID(s):
1827066 2316122
PAR ID:
10555250
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
microPublication Biology
Date Published:
Journal Name:
microPublication biology
Volume:
2024
ISSN:
2578-9430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Neoadjuvant chemotherapy (NACT) is an increasingly used approach for treatment of breast cancer. The pathological complete response (pCR) is considered a good predictor of disease-specific survival. This study investigated whether circulating exosomal microRNAs could predict pCR in breast cancer patients treated with NACT. Method: Plasma samples of 20 breast cancer patients treated with NACT were collected prior to and after the first cycle. RNA sequencing was used to determine microRNA profiling. The Cancer Genome Atlas (TCGA) was used to explore the expression patterns and survivability of the candidate miRNAs, and their potential targets based on the expression levels and copy number variation (CNV) data. Results: Three miRNAs before that NACT (miR-30b, miR-328 and miR-423) predicted pCR in all of the analyzed samples. Upregulation of miR-127 correlated with pCR in triple-negative breast cancer (TNBC). After the first NACT dose, pCR was predicted by exo-miR-141, while miR-34a, exo-miR182, and exo-miR-183 predicted non-pCR. A significant correlation between the candidate miRNAs and the overall survival, subtype, and metastasis in breast cancer, suggesting their potential role as predictive biomarkers of pCR. Conclusions: If the miRNAs identified in this study are validated in a large cohort of patients, they might serve as predictive non-invasive liquid biopsy biomarkers for monitoring pCR to NACT in breast cancer. 
    more » « less
  2. Approximately 75% of diagnosed breast cancer tumors are estrogen-receptor-positive tumors and are associated with a better prognosis due to response to hormonal therapies. However, around 40% of patients relapse after hormonal therapies. Genomic analysis of gene expression profiles in primary breast cancers and tamoxifen-resistant cell lines suggested the potential role of miR-489 in the regulation of estrogen signaling and development of tamoxifen resistance. Our in vitro analysis showed that loss of miR-489 expression promoted tamoxifen resistance, while overexpression of miR-489 in tamoxifen-resistant cells restored tamoxifen sensitivity. Mechanistically, we found that miR-489 is an estrogen-regulated miRNA that negatively regulates estrogen receptor signaling by using at least the following two mechanisms: (i) modulation of the ER phosphorylation status by inhibiting MAPK and AKT kinase activities; (ii) regulation of nuclear-to-cytosol translocation of estrogen receptor α (ERα) by decreasing p38 expression and consequently ER phosphorylation. In addition, miR-489 can break the positive feed-forward loop between the estrogen-Erα axis and p38 MAPK in breast cancer cells, which is necessary for its function as a transcription factor. Overall, our study unveiled the underlying molecular mechanism by which miR-489 regulates an estrogen signaling pathway through a negative feedback loop and uncovered its role in both the development of and overcoming of tamoxifen resistance in breast cancers. 
    more » « less
  3. Weaver, Valerie Marie (Ed.)
    In cancer progression, tumor microenvironments (TME) progressively become denser and hypoxic, and cell migrate toward higher oxygen levels as they invade across the tumor-stromal boundary. Although cell invasion dependence on optimal collagen density is well appreciated, it remains unclear whether past oxygen conditions alter future invasion phenotype of cells. Here, we show that normal human mammary epithelial cells (MCF10A) and leader-like human breast tumor cells (BT549) undergo higher rates of invasion and collagen deformation after past exposure to hypoxia, compared with normoxia controls. Upon increasing collagen density by ∼50%, cell invasion under normoxia reduced, as expected due to the increased matrix crowding. However, surprisingly, past hypoxia increased cell invasion in future normoxic dense collagen, with more pronounced invasion of cancer cells. This culmination of cancer-related conditions of hypoxia history, tumor cell, and denser collagen led to more aggressive invasion phenotypes. We found that hypoxia-primed cancer cells produce laminin332, a basement membrane protein required for cell–matrix adhesions, which could explain the additional adhesion feedback from the matrix that led to invasion after hypoxia priming. Depletion of Cdh3 disrupts the hypoxia-dependent laminin production and thus disables the rise in rates of cancer cell invasion and collagen deformation caused by hypoxia memory. These findings highlight the importance of considering past oxygen conditions in combination with current mechanical composition of tissues to better understand tumor invasion in physically evolving TME. 
    more » « less
  4. Abstract During the migration of cancer cells for metastasis, cancer cells can be exposed to fluid shear conditions. We examined two breast cancer cell lines, MDA-MB-468 (less metastatic) and MDA-MB-231 (more metastatic), and a benign MCF-10A epithelial cell line for their responsiveness in migration to fluid shear. We tested fluid shear at 15 dyne/cm2 that can be encountered during breast cancer cells traveling through blood vessels or metastasizing to mechanically active tissues such as bone. MCF-10A exhibited the least migration with a trend of migrating in the flow direction. Intriguingly, fluid shear played a potent role as a trigger for MDA-MB-231 cell migration, inducing directional migration along the flow with significantly increased displacement length and migration speed and decreased arrest coefficient relative to unflowed MDA-MB-231. In contrast, MDA-MB-468 cells were markedly less migratory than MDA-MB-231 cells, and responded very poorly to fluid shear. As a result, MDA-MB-468 cells did not exhibit noticeable difference in migration between static and flow conditions, as was distinct in root-mean-square (RMS) displacement—an ensemble average of all participating cells. These may suggest that the difference between more metastatic MDA-MB-231 and less metastatic MDA-MB-468 breast cancer cells could be at least partly involved with their differential responsiveness to fluid shear stimulatory cues. Our study provides new data in regard to potential crosstalk between fluid shear and metastatic potential in mediating breast cancer cell migration. 
    more » « less
  5. Abstract Cancer nanomedicines predominately rely on transport processes controlled by tumor‐associated endothelial cells to deliver therapeutic and diagnostic payloads into solid tumors. While the dominant role of this class of endothelial cells for nanoparticle transport and tumor delivery is established in animal models, the translational potential in human cells needs exploration. Using primary human breast cancer as a model, the differential interactions of normal and tumor‐associated endothelial cells with clinically relevant nanomedicine formulations are explored and quantified. Primary human breast cancer‐associated endothelial cells exhibit up to ≈2 times higher nanoparticle uptake than normal human mammary microvascular endothelial cells. Super‐resolution imaging studies reveal a significantly higher intracellular vesicle number for tumor‐associated endothelial cells, indicating a substantial increase in cellular transport activities. RNA sequencing and gene expression analysis indicate the upregulation of transport‐related genes, especially motor protein genes, in tumor‐associated endothelial cells. Collectively, the results demonstrate that primary human breast cancer‐associated endothelial cells exhibit enhanced interactions with nanomedicines, suggesting a potentially significant role for these cells in nanoparticle tumor delivery in human patients. Engineering nanoparticles that leverage the translational potential of tumor‐associated endothelial cell‐mediated transport into human solid tumors may lead to the development of safer and more effective clinical cancer nanomedicines. 
    more » « less