skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Roadmap on methods and software for electronic structure based simulations in chemistry and materials
Abstract This Roadmap article provides a succinct, comprehensive overview of the state of electronic structure (ES) methods and software for molecular and materials simulations. Seventeen distinct sections collect insights by 51 leading scientists in the field. Each contribution addresses the status of a particular area, as well as current challenges and anticipated future advances, with a particular eye towards software related aspects and providing key references for further reading. Foundational sections cover density functional theory and its implementation in real-world simulation frameworks, Green’s function based many-body perturbation theory, wave-function based and stochastic ES approaches, relativistic effects and semiempirical ES theory approaches. Subsequent sections cover nuclear quantum effects, real-time propagation of the ES, challenges for computational spectroscopy simulations, and exploration of complex potential energy surfaces. The final sections summarize practical aspects, including computational workflows for complex simulation tasks, the impact of current and future high-performance computing architectures, software engineering practices, education and training to maintain and broaden the community, as well as the status of and needs for ES based modeling from the vantage point of industry environments. Overall, the field of ES software and method development continues to unlock immense opportunities for future scientific discovery, based on the growing ability of computations to reveal complex phenomena, processes and properties that are determined by the make-up of matter at the atomic scale, with high precision.  more » « less
Award ID(s):
2152633 2154753 1954894
PAR ID:
10555314
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Electronic Structure
Volume:
6
Issue:
4
ISSN:
2516-1075
Format(s):
Medium: X Size: Article No. 042501
Size(s):
Article No. 042501
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-axial real-time hybrid simulation (maRTHS) uses multiple hydraulic actuators to apply loads and deform experimental substructures, enacting bothtranslationalandrotationalmotion. This allows for an increased level of realism in seismic testing. However, this also demands the implementation of multiple-input, multiple-output control strategies with complex nonlinear behaviors. To realize true real-time hybrid simulation at the necessary sub-millisecond timescales, computational platforms will need to support these complexities at scale, while still providing deadline assurance. This paper presents initial work towards supporting (and is influenced by the need for) envisioned larger-scale future experiments based on the current maRTHS benchmark: it discusses aspects of hardware, operating system kernels, runtime middleware, and scheduling theory that may be leveraged or developed to meet those goals. This work aims to create new concurrency platforms capable of managing task scheduling and adaptive event handling for computationally intensive numerical simulation and control models like those for the maRTHS benchmark problem. These should support real-time behavior at millisecond timescales, even for large complex structures with thousands of degrees of freedom. Temporal guarantees should be maintained across behavioral and computational mode changes, e.g., linear to nonlinear control. Pursuant to this goal, preliminary scalability analysis is conducted towards designing future maRTHS experiments. The results demonstrate that the increased capabilities of modern hardware architectures are able to handle larger finite element models compared to prior work, while imposing the same latency constraints. However, the results also illustrate a subtle challenge: with larger numbers of CPU cores, thread coordination incurs more overhead. These results provide insight into the computational requirements to support envisioned future experiments that will take the maRTHS benchmark problem to nine stories and beyond in scale. In particular, this paper (1) re-evaluates scalability of prior work on current platform hardware, and (2) assesses the resource demands of a basic smaller scale model from which to gauge the projected scalability of the new maRTHS benchmark as ever larger and more complex models are integrated within it. 
    more » « less
  2. null (Ed.)
    Abstract Computational approaches, especially finite element analysis (FEA), have been rapidly growing in both academia and industry during the last few decades. FEA serves as a powerful and efficient approach for simulating real-life experiments, including industrial product development, machine design, and biomedical research, particularly in biomechanics and biomaterials. Accordingly, FEA has been a “go-to” high biofidelic software tool to simulate and quantify the biomechanics of the foot–ankle complex, as well as to predict the risk of foot and ankle injuries, which are one of the most common musculoskeletal injuries among physically active individuals. This paper provides a review of the in silico FEA of the foot–ankle complex. First, a brief history of computational modeling methods and finite element (FE) simulations for foot–ankle models is introduced. Second, a general approach to build an FE foot and ankle model is presented, including a detailed procedure to accurately construct, calibrate, verify, and validate an FE model in its appropriate simulation environment. Third, current applications, as well as future improvements of the foot and ankle FE models, especially in the biomedical field, are discussed. Finally, a conclusion is made on the efficiency and development of FEA as a computational approach in investigating the biomechanics of the foot–ankle complex. Overall, this review integrates insightful information for biomedical engineers, medical professionals, and researchers to conduct more accurate research on the foot–ankle FE models in the future. 
    more » « less
  3. Abstract Modeling and simulation is transforming modern materials science, becoming an important tool for the discovery of new materials and material phenomena, for gaining insight into the processes that govern materials behavior, and, increasingly, for quantitative predictions that can be used as part of a design tool in full partnership with experimental synthesis and characterization. Modeling and simulation is the essential bridge from good science to good engineering, spanning from fundamental understanding of materials behavior to deliberate design of new materials technologies leveraging new properties and processes. This Roadmap presents a broad overview of the extensive impact computational modeling has had in materials science in the past few decades, and offers focused perspectives on where the path forward lies as this rapidly expanding field evolves to meet the challenges of the next few decades. The Roadmap offers perspectives on advances within disciplines as diverse as phase field methods to model mesoscale behavior and molecular dynamics methods to deduce the fundamental atomic-scale dynamical processes governing materials response, to the challenges involved in the interdisciplinary research that tackles complex materials problems where the governing phenomena span different scales of materials behavior requiring multiscale approaches. The shift from understanding fundamental materials behavior to development of quantitative approaches to explain and predict experimental observations requires advances in the methods and practice in simulations for reproducibility and reliability, and interacting with a computational ecosystem that integrates new theory development, innovative applications, and an increasingly integrated software and computational infrastructure that takes advantage of the increasingly powerful computational methods and computing hardware. 
    more » « less
  4. Abstract Lack of rigorous reproducibility and validation are significant hurdles for scientific development across many fields. Materials science, in particular, encompasses a variety of experimental and theoretical approaches that require careful benchmarking. Leaderboard efforts have been developed previously to mitigate these issues. However, a comprehensive comparison and benchmarking on an integrated platform with multiple data modalities with perfect and defect materials data is still lacking. This work introduces JARVIS-Leaderboard, an open-source and community-driven platform that facilitates benchmarking and enhances reproducibility. The platform allows users to set up benchmarks with custom tasks and enables contributions in the form of dataset, code, and meta-data submissions. We cover the following materials design categories: Artificial Intelligence (AI), Electronic Structure (ES), Force-fields (FF), Quantum Computation (QC), and Experiments (EXP). For AI, we cover several types of input data, including atomic structures, atomistic images, spectra, and text. For ES, we consider multiple ES approaches, software packages, pseudopotentials, materials, and properties, comparing results to experiment. For FF, we compare multiple approaches for material property predictions. For QC, we benchmark Hamiltonian simulations using various quantum algorithms and circuits. Finally, for experiments, we use the inter-laboratory approach to establish benchmarks. There are 1281 contributions to 274 benchmarks using 152 methods with more than 8 million data points, and the leaderboard is continuously expanding. The JARVIS-Leaderboard is available at the website:https://pages.nist.gov/jarvis_leaderboard/ 
    more » « less
  5. Abstract The potential energy of molecular species and their conformers can be computed with a wide range of computational chemistry methods, from molecular mechanics to ab initio quantum chemistry. However, the proper choice of the computational approach based on computational cost and reliability of calculated energies is a dilemma, especially for large molecules. This dilemma is proved to be even more problematic for studies that require hundreds and thousands of calculations, such as drug discovery. On the other hand, driven by their pattern recognition capabilities, neural networks started to gain popularity in the computational chemistry community. During the last decade, many neural network potentials have been developed to predict a variety of chemical information of different systems. Neural network potentials are proved to predict chemical properties with accuracy comparable to quantum mechanical approaches but with the cost approaching molecular mechanics calculations. As a result, the development of more reliable, transferable, and extensible neural network potentials became an attractive field of study for researchers. In this review, we outlined an overview of the status of current neural network potentials and strategies to improve their accuracy. We provide recent examples of studies that prove the applicability of these potentials. We also discuss the capabilities and shortcomings of the current models and the challenges and future aspects of their development and applications. It is expected that this review would provide guidance for the development of neural network potentials and the exploitation of their applicability. This article is categorized under:Data Science > Artificial Intelligence/Machine LearningMolecular and Statistical Mechanics > Molecular InteractionsSoftware > Molecular Modeling 
    more » « less