These transect organized radargrams were collected as part of the Center for Oldest Ice Exploration (COLDEX) Science and Technology Center (https://www.coldex.org) in the 2023/24 (CXA2) airborne reconnaissance field season. The raw 3 TB data is deposited at the USAP data center at https://doi.org/10.15784/601768. Flight organized data with additional processing by the University of Kansas to remove electromagnetic interference can be found at the Open Polar Radar server (https://www.openpolarradar.org). The science goal was to characterize the ice sheet between Antarctica's Dome A and Amundsen Scott South Pole Station, to locate sites of interest for the drilling of an ice core with ages spanning the mid-Pleistocene. The radar was deployed on Balser C-FMKB, and flown at ranges of up to 800 km from South Pole Station at velocities of 90 m/s and typical altitude above ground of 600 m. Other instruments included a UHF array system provided by the University of Kansas, a gravity meter, a magnetometer, a laser altimeter, and multiple global navigation satellite systems receivers. The radar data is used for finding ice thickness, bed character, englacial structure and surface assessment. Dataset organization Transects are provided a P/S/T nomenclature, organized by the Project they are flying in, the acquisition System (typically named after the aircraft) and the Transect within the Project. Transects were collected in preplanned systems with the following parameters: CLX radials (CLX/MKB##/R###), attempting to emulate flow lines from Dome A and radiating (in the EPSG:3031 polar stereographic projection) from easting 965 km northing 385 km, with a separation of 0.25 degrees. CLX corridor (CLX/MKB##/X###) rotated from the EPSG:3031 polar stereographic projection at -150 degrees and separated by 10 km in the Y direction and 3.75 km in the X direction CLX2 corridor (CLX2/MKB##/X###) rotated from the EPSG:3031 polar stereographic projection at -150 degrees and separated by 2.5 km in its Y direction and 2.5 km in its X direction NPXE radials (NPXE/MKB##/R####) primarily designed to survey the Upper Byrd Glacier Catchment, constitute spokes radiating from South Pole separated by 2 degrees, in the EPSG:3031 polar stereographic projection Untargeted transit lines used the name of the expedition (CXA2) as the project, and used the flight and the increment within the flight to name the Transect (eg (CXA2/MKB2n/F10T02a). Processing These data represent range compressed VHF radargrams as collected and analyzed in the field. The data are from the MARFA radar system, a 60 MHz ice penetrating radar system that has operated in several different guises over the years. MARFA operates with a 1 microsecond chirp with a design bandwidth of 15 MHz, allowing for ~8 meter range resolution. The record rate after onboard stacking is 200 Hz. High and low gain channels are collected from antennas on each side of the aircraft. In ground processing, the data were stacked 10x coherently to reduce range delayed incoherent surface scattering, and then stacked 5 times incoherently to improve image quality. In this preliminary processing, the effective resolution of deep scattering is several hundred meters due to range ambiguities at depth. Data format These data collection represents georeferenced, time registered instrument measurements (L1B data) converted to SI units. The data format are netCDF3 files, following the formats used for NASA/AAD/UTIG's ICECAP/OIB project at NASA's NSIDC DAAC (10.5067/0I7PFBVQOGO5). Metadata fields can be accessed using the open source ncdump tool, or c, python or matlab modules. A Keyhole Metadata Language (KML) file with geolocation for all transects is also provided. See https://www.loc.gov/preservation/digital/formats/fdd/fdd000330.shtml for resources on NetCDF-3, and https://nsidc.org/data/IR2HI1B/versions/1 for a description of the similar OIB dataset. Acknowledgements This work was supported by the Center for Oldest Ice Exploration, an NSF Science and Technology Center (NSF 2019719). We thank the NSF Office of Polar Programs, the NSF Office of Integrative Activities, and Oregon State University for financial and infrastructure support, and the NSF Antarctic Infrastructure and Logistics Program, and the Antarctic Support Contractor for logistical support. Additional support was provided by the G. Unger Vetlesen Foundation.
more »
« less
Comprehensive multi frequency airborne mapping of the southern flank of Dome A: results of the COLDEX airborne program.
The Center for Oldest Ice Exploration (COLDEX) is a US initiative funded to search for climate records over the last 5 million years, including locating sites for an accessible continuous ice core going back 1.5 million years. As part of this effort, COLDEX has mapped the southern flank of Dome A, East Antarctica using an instrumented Basler, including dual frequency radar observations of the ice sheet and ice bed, as well as potential fields measurements (see presentation by Kerr in EGU session G4.3) across two field seasons from Amundsen-Scott South Pole Station. The aerogeophysical system included both the UTIG VHF MARFA radar system operating at 52.5-67.5 MHz, as well as a new large high resolution UHF array from CReSIS operating at 670-750 MHz operating simultaneously. A goal of this project was to obtain airborne repeat interferometry for segments of the survey, as well as directly feed ice sheet models using englacial isochrons (see Singh presentation in EGU session CR5.6). These goals lead to a survey explicitly designed around ice sheet flow lines. While prior work had sampled the region at lithospheric scales, the COLDEX survey had two components - the first was to map the region at crustal scales (line spacing of 15 km), and the second was to map subareas at ice sheet scales (line spacing of 3 km). Immediate observations include an extensive basal unit and strong discontinuity in englacial stratigraphy that runs across the survey area and appears correlated with changes in bed interface properties. The airborne campaign will be used to inform follow up ground campaigns to understand processes relevant for old ice preservation.
more »
« less
- Award ID(s):
- 2127606
- PAR ID:
- 10555428
- Publisher / Repository:
- Copernicus EGUsphere
- Date Published:
- Subject(s) / Keyword(s):
- Areogeophysics Antarctica radioglaciology
- Format(s):
- Medium: X
- Institution:
- University of Texas Institute for Geophysics
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
These transect organized radargrams were collected as part of the Center for Oldest Ice Exploration (COLDEX) Science and Technology Center (https://www.coldex.org) in the 2022/23 (CXA1) airborne reconnaissance field season. The raw 3 TB data is deposited at the USAP data center at https://doi.org/10.15784/601768. Flight organized data with additional processing by the University of Kansas to remove electromagnetic interference can be found at the Open Polar Radar server (https://www.openpolarradar.org). The science goal was to characterize the ice sheet between Antarctica's Dome A and Amundsen Scott South Pole Station, to locate sites of interest for the drilling of an ice core with ages spanning the mid-Pleistocene. The radar was deployed on Balser C-FMKB, and flown at ranges of up to 800 km from South Pole Station at velocities of 90 m/s and typical altitude above ground of 600 m. Other instruments included a UHF array system provided by the University of Kansas, a gravity meter, a magnetometer, a laser altimeter, and multiple global navigation satellite systems receivers. The radar data is used for finding ice thickness, bed character, englacial structure and surface assessment. Dataset organization Transects are provided a P/S/T nomenclature, organized by the Project they are flying in, the acquisition System (typically named after the aircraft) and the Transect within the Project. Transects were collected in preplanned systems with the following parameters: CLX radials (CLX/MKB##/R###), attempting to emulate flow lines from Dome A and radiating (in the EPSG:3031 polar stereographic projection) from easting 965 km northing 385 km, with a separation of 0.25 degrees. CLX corridor (CLX/MKB##/X###) rotated from the EPSG:3031 polar stereographic projection at -150 degrees and separated by 10 km in the Y direction and 3.75 km in the X direction CLX2 corridor (CLX2/MKB##/X###) rotated from the EPSG:3031 polar stereographic projection at -150 degrees and separated by 2.5 km in its Y direction and 2.5 km in its X direction SAD corridor (SAD/MKB##/X###|Y####) designed to characterize the Saddle region near South Pole approximately perpendicular to the flow lines, rooted from the EPSG:3031 polar stereographic projection at -73.8 degrees and separated by 2.5 km in its Y direction and 2.5 km in the its X direction Untargeted transit lines used the name of the expedition (CXA1) as the project, and used the flight and the increment within the flight to name the Transect (eg (CXA1/MKB2n/F10T02a). Processing These data represent range compressed VHF radargrams as collected and analyzed in the field. The data are from the MARFA radar system, a 60 MHz ice penetrating radar system that has operated in several different guises over the years. MARFA operates with a 1 microsecond chirp with a design bandwidth of 15 MHz, allowing for ~8 range resolution. The record rate after onboard stacking is 200 Hz. High and low gain channels are collected from antennas on each side of the aircraft. In ground processing, the data were stacked 10x coherently to reduce range delayed incoherent surface scattering, and then stacked 5 times incoherently to improve image quality. In this preliminary processing, the effective resolution of deep scattering is several hundred meters due to range ambiguities at depth. Data format These data collection represents georeferenced, time registered instrument measurements (L1B data) converted to SI units. The data format are netCDF3 files, following the formats used for NASA/AAD/UTIG's ICECAP/OIB project at NASA's NSIDC DAAC (10.5067/0I7PFBVQOGO5). Metadata fields can be accessed using the open source ncdump tool, or c, python or matlab modules. A Keyhole Metadata Language (KML) file with geolocation for all transects is also provided. See https://www.loc.gov/preservation/digital/formats/fdd/fdd000330.shtml for resources on NetCDF-3, and https://nsidc.org/data/IR2HI1B/versions/1 for a description of the similar OIB dataset. Acknowledgements This work was supported by the Center for Oldest Ice Exploration, an NSF Science and Technology Center (NSF 2019719). We thank the NSF Office of Polar Programs, the NSF Office of Integrative Activities, and Oregon State University for financial and infrastructure support, and the NSF Antarctic Infrastructure and Logistics Program, and the Antarctic Support Contractor for logistical support. Additional support was provided by the G. Unger Vetlesen Foundation.more » « less
-
<p><b> Introduction </b> <br> The National Science Foundations Center for Oldest Ice Exploration (<a href="https://www.coldex.org">NSF COLDEX</a>) is a Science and Technology Center working to extend the record of atmospheric gases, temperature and ice sheet history to greater than 1 million years. As part of this effort, NSF COLDEX has been searching for a site for a continuous ice core extending through the mid-Pleistocene transition. Two seasons of airborne survey were conducted from South Pole Station across the southern flank of Dome A. </p> <p><b> 2022-2023 Field Season </b> <br> In the 2022-20223 field season (CXA1), and using a BT-67 Basler, NSF COLDEX conducted 13 full flights and one weather abort from South Pole Station toward the southern flank of Dome C; as well as 1 survey flight toward Hercules Dome in support of the Hercules Dome Drilling project. Three test flights were conducted from McMurdo Station. Instrumentation included the <a href="https://doi.org/10.18738/T8/J38CO5">60 MHz MARFA ice penetrating radar </a> from the University of Texas Institute for Geophysics, a <a href="https://doi.org/10.1109/IGARSS53475.2024.10640448">UHF ice penetrating radar </a> from the Center for Remote Sensing and Integrated Systems; an GT-2 Gravimeter, and LD-90 laser altimeter and an G-823 Magnetometer. </p> <p><b> Basal specularity content </b> <br> These basal specularity content were derived from comparing 1D and 2D focused MARFA data (<a href="http://doi.org/10.1109/TGRS.2007.897416">Peters et al., 2007</a>). By comparing bed echo strengths for different focusing apertures, and accounting for the ranges and angles involved, we can derive the "specularity content" of the bed echo, a proxy for small scale bed roughness and a good indicator for subglacial water pressure in regions of distributed subglacial water (<a href="https://doi.org/10.1109/LGRS.2014.2337878">Schroeder et al., 2014, IEEE GRSL </a>, <a href="https://doi.org/10.1016/j.epsl.2019.115961">Dow et al., 2019, EPSL </a>) and smooth deforming bed material (<a href="http://doi.org/10.1002/2014GL061645">Schroeder et al., 2014, GRL</a>, <a href="http://dx.doi/org/10.1098/rsta.2014.0297">Young et al., 2016, PTRS</a>. Specularity data are inherently noisy, so these products have been smoothed with a 1 km filter.</p>more » « less
-
<p><b> Introduction </b> <br> The National Science Foundations Center for Oldest Ice Exploration (<a href="https://www.coldex.org">NSF COLDEX</a>) is a Science and Technology Center working to extend the record of atmospheric gases, temperature and ice sheet history to greater than 1 million years. As part of this effort, NSF COLDEX has been searching for a site for a continuous ice core extending through the mid-Pleistocene transition. Two seasons of airborne survey were conducted from South Pole Station across the southern flank of Dome A. </p> <p><b> 2023-2024 Field Season </b> <br> In the 2023-2024 field season (CXA2), and using a BT-67 Basler, NSF COLDEX conducted 17 flights from South Pole Station toward the southern flank of Dome C. Three test flights were conducted from McMurdo Station. Instrumentation included the <a href="https://doi.org/10.18738/T8/J38CO5">60 MHz MARFA ice penetrating radar </a> from the University of Texas Institute for Geophysics, a <a href="https://doi.org/10.1109/IGARSS53475.2024.10640448">UHF ice penetrating radar </a> from the Center for Remote Sensing and Integrated Systems; an GT-2 Gravimeter, and LD-90 laser altimeter and an G-823 Magnetometer. </p> <p><b> Basal specularity content </b> <br> These basal specularity content were derived from comparing 1D and 2D focused MARFA data (<a href="http://doi.org/10.1109/TGRS.2007.897416">Peters et al., 2007</a>). By comparing bed echo strengths for different focusing apertures, and accounting for the ranges and angles involved, we can derive the "specularity content" of the bed echo, a proxy for small scale bed roughness and a good indicator for subglacial water pressure in regions of distributed subglacial water (<a href="https://doi.org/10.1109/LGRS.2014.2337878">Schroeder et al., 2014, IEEE GRSL </a>, <a href="https://doi.org/10.1016/j.epsl.2019.115961">Dow et al., 2019, EPSL </a>) and smooth deforming bed material (<a href="http://doi.org/10.1002/2014GL061645">Schroeder et al., 2014, GRL</a>, <a href="http://dx.doi/org/10.1098/rsta.2014.0297">Young et al., 2016, PTRS</a>. Specularity data are inherently noisy, so these products have been smoothed with a 1 km filter.</p>more » « less
-
This dataset contains the basal ice unit thickness as measured by the NSF COLDEX MARFA ice-penetrating radar survey, which mainly focuses on the southern flank of Dome A. The "basal ice unit" is hereby defined as the bottom portion of the ice sheet where no clear and traceable englacial reflection is detected by the radar sounder. Raw radar data can be found at: https://doi.org/10.15784/601768. The basal ice unit is mapped using the DecisionSpace Geosciences 10ep software package. This dataset provides three data products: • Thickness of the basal ice unit • Thickness of the stratigraphic ice unit above the basal ice unit • The shape of the basal ice unit boundary, where rapid basal ice unit thinning is observed in the middle of the South Pole Basin.more » « less
An official website of the United States government

