skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2127606

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present Bedmap3, the latest suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60 °S. Bedmap3 incorporates and adds to all post-1950s datasets previously used for Bedmap2, including 84 new aero-geophysical surveys by 15 data providers, an additional 52 million data points and 1.9 million line-kilometres of measurement. These efforts have filled notable gaps including in major mountain ranges and the deep interior of East Antarctica, along West Antarctic coastlines and on the Antarctic Peninsula. Our new Bedmap3/RINGS grounding line similarly consolidates multiple recent mappings into a single, spatially coherent feature. Combined with updated maps of surface topography, ice shelf thickness, rock outcrops and bathymetry, Bedmap3 reveals in much greater detail the subglacial landscape and distribution of Antarctica’s ice, providing new opportunities to interpret continental-scale landscape evolution and to model the past and future evolution of the Antarctic ice sheets. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Abstract The deep interior of the East Antarctic Ice sheet likely contains important records of climate and ice sheet evolution. Here we report on a recent aerogeophysical survey of the southern flank of Dome A, over South Pole Basin. We find an extensive radioglaciologically defined basal unit under Dome A that abruptly truncates within South Pole Basin. This truncation aligns with a change of subglacial bed properties and distinct subglacial landforms. We infer that this basal unit may be slowly transporting and depositing material through local basal melting in South Pole Basin into an extensive, subglacially forming, sedimentary basin. In turn, this sedimentary basin may induce locally enhanced melting by hosting local groundwater. 
    more » « less
  3. {"Abstract":["The PPT survey extended from the Ross Ice Shelf, southward over the TAM along 150W between the Scott and Reedy Glaciers, and through the South Pole. Approximately 15,000 line km were flown. North-south oriented transects were flown 10 km apart and west-east tie lines were flown with a 30 km line spacing. Fifteen km long transect 'run-ins' and 'run-outs' were added to each line, thus ensuring data collection to survey boundaries. Laser altimetry, ice-penetrating radar, gravity and magnetic field intensity data were collected. This work was funded by NSF-OPP grant 9615832 with the project title: Collaborative Research: Contrasting Architecture and Dynamics of the Transantarctic Mountains (Pensacola-Pole Transect). Principal Investigators were D.D. Blankenship, University of Texas Institute for Geophysics, and R.E. Bell and W.R. Buck, Lamont-Doherty Earth Observatory.\n<br>\n<br>\nThis work was conducted by the Support Office for Aerogeophysical Research (SOAR) NSF facility under cooperative agreement OPP-9319379. The 1998/1999 field season <a href="http://hdl.handle.net/2152/65412"> report </a>(Holt et al 1999) describes the field work in more detail.\n<br>\n<br>\nThese data are gridded orthogonal data with a point every 850 m. Data is in a space delimited ASCII table with three columns: Longitude, Latitude and geophysical observation. Grids are smoothed using a Gaussian filter (2.125 km for gravity, magnetic field anomaly, surface elevation and 8.5 km for ice thickness) and surfaced using a bicubic spline method.\n<br>\nObservations include:\n<ol>\n<li> Bed elevation (m, WGS-84) </li> \n<li> Gravity disturbance (mGal, WGS-84) </li> \n<li> Ice Thickness (m) </li> \n<li> Laser Derived Surface Elevation (m, WGS-84) </li> \n<li> Magnetic Anomaly (nT, IGRF) </li> \n<li> Radar Derived Surface Elevation (m, WGS-84) </li> \n</ol>\nA browse image is included. \n<br><br>\n<i>Acknowledgement: </i><br>\nIn keeping with NSF Grant Policy, any publication using these data (including web documents) must contain the following acknowledgment: "This material is based on work supported by the National Science Foundation under cooperative agreement OPP-9319379." Also, any oral presentation utilizing these materials should acknowledge the support of the National Science Foundation. In addition, we request that any oral presentation, web page or publication also acknowledge SOAR and the University of Texas. A suitable citation for PPT data is:\n<br>\n<i>Davis, M.B., 2001, Subglacial Morphology and Structural Geology in the Southern Transantarctic Mountains from Airborne Geophysics, M.S. Thesis, Univ. of Texas, 133 pp.<a href="http://dx.doi.org/10.26153/tsw/2786">doi:10.26153/tsw/2786</a></i>\n<br>\nThese data represent the data that was hosted on the UTIG webpage at https://www-udc.ig.utexas.edu/external/facilities/aero/data/soar/PPT/SOAR_ppt.htm."]} 
    more » « less
  4. Radio-echo sounding (RES) has revealed an internal architecture within both the West and East Antarctic ice sheets that records their depositional, deformational and melting histories. Crucially, RES-imaged internal-reflecting horizons, tied to ice-core age–depth profiles, can be treated as isochrones that record the age–depth structure across the Antarctic ice sheets. These enable the reconstruction of past climate and ice dynamical processes on large scales, which are complementary to but more spatially extensive than commonly used proxy records (e.g. former ice limits constrained by cosmogenic dating or offshore sediment sequences) around Antarctica. We review the progress towards building a pan-Antarctic age–depth model from these data by first introducing the relevant RES datasets that have been acquired across Antarctica over the last 6 decades (focussing specifically on those that detected internal-reflecting horizons) and outlining the processing steps typically undertaken to visualise, trace and date (by intersection with ice cores or modelling) the RES-imaged isochrones. We summarise the scientific applications for which Antarctica's internal architecture has been used to date and present a pathway to expanding Antarctic radiostratigraphy across the continent to provide a benchmark for a wider range of investigations: (1) identification of optimal sites for retrieving new ice-core palaeoclimate records targeting different periods; (2) reconstruction of surface mass balance on millennial or historical timescales; (3) estimation of basal melting and geothermal heat flux from radiostratigraphy and comprehensive mapping of basal-ice units to complement inferences from other geophysical and geological methods; (4) advancement of the knowledge of volcanic activity and fallout across Antarctica; and (5) refinement of numerical models that leverage radiostratigraphy to tune time-varying accumulation, basal melting and ice flow, firstly to reconstruct past behaviour and then to reduce uncertainties in projecting future ice-sheet behaviour. 
    more » « less
    Free, publicly-accessible full text available October 20, 2026
  5. <p>This is an example line of NSF COLDEX MARFA ice penetrating radar data (CLX/MKB2o/R66a) that has been processed to provide azimuthal information about radar echos from below, and to the front and back of the aircraft. The input was 1 meter slow time resampled coherent range record with phase intact. The data were pulse compressed and an azimuth fast Fourier transform was used to convert to azimuth angles in 1 km chunks, then slices at -19°, +19˚ and nadir were selected for these numpy arrays. These can be displayed as an RGB image with Blue = nadir, red = forward and green = rear</p> <p>The nadir slice should dominate specular echos, as seen with englacial reflecting horizons; where this trades to more balanced returns across all three channels, scattering dominates, as with rough bed rock or volume scattering. A gmt text file contains information about where this transition occurs in the ice column.</p> <p>Details in delay Doppler processing can be found in <a href="http://pds-geosciences.wustl.edu/mro/mro-m-sharad-5-radargram- v1/mrosh_2001/document/rgram_processing.pdf">Campbell et al., 2014</a>; the idea for using this approach for looking at englacial structure was discussed by <a href="https://doi.org/10.5194/egusphere-egu23-2856">Arenas-Pingarrón, Á. et al., 2023</a>. Details of HiCARs/MARFA focused processing can be found in <a href="http://dx.doi.org/10.1109/TGRS.2007.897416">Peters et al., 2007</a>.</p> 
    more » « less
  6. <p><b> Introduction </b> <br> The National Science Foundations Center for Oldest Ice Exploration (<a href="https://www.coldex.org">NSF COLDEX</a>) is a Science and Technology Center working to extend the record of atmospheric gases, temperature and ice sheet history to greater than 1 million years. As part of this effort, NSF COLDEX has been searching for a site for a continuous ice core extending through the mid-Pleistocene transition. Two seasons of airborne survey were conducted from South Pole Station across the southern flank of Dome A. </p> <p><b> 2022-2023 Field Season </b> <br> In the 2022-20223 field season (CXA1), and using a BT-67 Basler, NSF COLDEX conducted 13 full flights and one weather abort from South Pole Station toward the southern flank of Dome C; as well as 1 survey flight toward Hercules Dome in support of the Hercules Dome Drilling project. Three test flights were conducted from McMurdo Station. Instrumentation included the <a href="https://doi.org/10.18738/T8/J38CO5">60 MHz MARFA ice penetrating radar </a> from the University of Texas Institute for Geophysics, a <a href="https://doi.org/10.1109/IGARSS53475.2024.10640448">UHF ice penetrating radar </a> from the Center for Remote Sensing and Integrated Systems; an GT-2 Gravimeter, and LD-90 laser altimeter and an G-823 Magnetometer. </p> <p><b> Basal specularity content </b> <br> These basal specularity content were derived from comparing 1D and 2D focused MARFA data (<a href="http://doi.org/10.1109/TGRS.2007.897416">Peters et al., 2007</a>). By comparing bed echo strengths for different focusing apertures, and accounting for the ranges and angles involved, we can derive the "specularity content" of the bed echo, a proxy for small scale bed roughness and a good indicator for subglacial water pressure in regions of distributed subglacial water (<a href="https://doi.org/10.1109/LGRS.2014.2337878">Schroeder et al., 2014, IEEE GRSL </a>, <a href="https://doi.org/10.1016/j.epsl.2019.115961">Dow et al., 2019, EPSL </a>) and smooth deforming bed material (<a href="http://doi.org/10.1002/2014GL061645">Schroeder et al., 2014, GRL</a>, <a href="http://dx.doi/org/10.1098/rsta.2014.0297">Young et al., 2016, PTRS</a>. Specularity data are inherently noisy, so these products have been smoothed with a 1 km filter.</p> 
    more » « less
  7. <p>NSF COLDEX performed two airborne campaigns from South Pole Station over the Southern Flank of Dome A and 2022-23 and 2023-24, searching for a potential site of a continuous ice core that could sample the mid-Pleistocene transition. Ice thickness data extracted from the MARFA radar system has allow for a new understanding of this region.</p> <p>Here we generate crustal scale maps of ice thickness, bed elevation, specularity content, subglacial RMS deviation and fractional basal ice thickness with 1 km sampling, and 10 km resolution. We include both masked and unmasked grids.</p> <p> The projection is in the SCAR standard ESPG:3031 polar stereographic projection with true scale at 71˚S.</p> <p>These geotiffs were generated using performed using GMT6.5 (<a href="https://doi.org/10.1029/2019GC008515">Wessel et al., 2019</a>) using the pygmt interface, by binning the raw data to 2.5 km cells, and using the <a href="https://github.com/sakov/nn-c"> nnbathy </a> program to apply natural neighbor interpolation to 1 km sampling. A 10 km Gaussian filter - representing typical lines spacings - was applied and then a mask was applied for all locations where the nearest data point was further than 8 km. </p> Ice thickness, bed elevation and RMS deviation @ 400 m length scale (<a href="http://dx.doi.org/10.1029/2000JE001429">roughness</a>) data includes the following datasets: <ul> <li> UTIG/CRESIS <a href="https://doi.org/10.18738/T8/J38CO5">NSF COLDEX Airborne MARFA data</a></li> <li> British Antarctic Survey <a href="https://doi.org/10.5285/0f6f5a45-d8af-4511-a264-b0b35ee34af6">AGAP-North</a></li> <li> LDEO <a href="https://doi.org/10.1594/IEDA/317765"> AGAP-South </a></li> <li> British Antarctic Survey <a href="https://doi.org/10.5270/esa-8ffoo3e">Polargap</a></li> <li> UTIG Support Office for Airborne Research <a href="https://doi.org/10.15784/601588">Pensacola-Pole Transect (PPT) </a></li> <li> NASA/CReSIS <a href="https://doi.org/10.5067/GDQ0CUCVTE2Q"> 2016 and 2018 Operation Ice Bridge </a> </li> <li> ICECAP/PRIC <a href="https://doi.org/10.15784/601437"> SPICECAP Titan Dome Survey </a> </ul> <p>Specularity content (<a href="https://doi.org/10.1109/LGRS.2014.2337878">Schroeder et al. 2014</a>) is compiled from <a href="https://doi.org/10.18738/T8/KHUT1U"> Young et al. 2025a </a> and <a href="https://doi.org/10.18738/T8/6T5JS6"> Young et al. 2025b</a>.</p> <p>Basal ice fractional thickness is complied from manual interpretation by Vega Gonzàlez, Yan and Singh. </p> <p>Code to generated these grids can be found at <a href="https://github.com/smudog/COLDEX_dichotomy_paper_2025"> at github.com </a></p> 
    more » « less
  8. {"Abstract":["This classified_bed data product represents the radar bed classification shown in <a href="https://doi.org/10.1098/rsta.2014.0297">Young et al., 2016</a>. Values of 0 represent specularity content below 20%; values of 3.3 represent specularity content above 20% and energy 1 microsecond below the bed 15 dB lower than the bed echo, and values of 6.7 represent specularity content above 20% and energy 1 microsecond below the bed 15 dB within than the bed echo. Grids for specularity content and post bed echo are also available. Data is available as COARDS-compliant netCDF-4/HDF5 grids (.grd) and GeoTiffs (.tiff), both in EPSG 3031 (Antarctic Polar Stereographic) projection.\n<p>\n<p>\nData were gridded using <a href="https://docs.generic-mapping-tools.org/6.1/gmt.html"> GMT6.1</a> and the <a href="https://github.com/sakov/nn-c">nnbathy</a> natural neighbor interpolator. Cell size was 1 km, gaussian filter distance was 5 km, and mask radius was 2 km.\n<p>\nBrowse images, with Bedmap3 (Pritchard et al., 2025) surface elevation contours and MEASURES phase derived surface velocities (Mouginot et al. 2019) are available for each dataset.\n\n<p>\n<p>\nAn interpretation of the values in the classified_bed product is that low values are rough bed, intermediate values are isotropic wet bed, and high values are anisotropic wet bed.\n\nVersion 1 includes data from the 2016 paper, including AGASEA over Thwaites Glacier (Holt et al., 2006), ATRS over West Antarctica (Peters et al., 2005), GIMBLE over Marie Byrd Land (Young et al, 2013) and parts of ICECAP over Wilkes Subglacial Basin, Dome C, Highland B and Totten Glacier. (Young et al, 2011, Young et al., 2016). We expect updates to the coverage as part of work funded by the Arête Glaciers Initiative.\n\n<p>\n<b>References</b>\n<br>\nHolt, J. W., Blankenship, D. D., Morse, D. L., Young, D. A., Peters, M. E., Kempf, S. D., Richter, T. G., Vaughan, D. G., and Corr, H., New boundary conditions for the West Antarctic ice sheet: subglacial topography of the Thwaites and Smith Glacier catchments, 2006, Geophysical Research Letters, 33 (L09502), pp., https://doi.org/10.1029/2005GL025561\n<br>\nMouginot, J., Rignot, E., and Scheuchl, B., Continent-wide, interferometric SAR phase, mapping of Antarctic ice velocity, 2019, Geophysical Research Letters, 46(16), pp.9710-9718, https://doi.org/10.1029/2019GL083826\n<br>\nPeters, M. E., Blankenship, D. D., and Morse, D. L., Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams, 2005 ,Journal of Geophysical Research, 110(B06303), pp.,https://doi.org/10.1029/2004JB003222\n<br>\nPritchard, H. D., and others.,Bedmap3 updated ice bed, surface and thickness gridded datasets for Antarctica,2025,Scientific Data,12(1), pp.414,https://doi.org/10.1038/s41597-025-04672-y\n<br>\nYoung, D. A., D. D. Blankenship, J. S. Greenbaum, E. Quartini, G. L. Muldoon, F. Habbal, L. E. Lindzey, C. A. Greene, E. M. Powell, G. C. Ng, T. G. Richter, G. Echeverry, and S. Kempf, 2024, Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE) Airborne VHF Radar Transects: 2012/2013 and 2014/2015, https://doi.org/10.18738/T8/BMXUHX, Texas Data Repository\n<br>\nYoung, D. A., Wright, A. P., Roberts, J. L., Warner, R. C., Young, N. W., Greenbaum, J. S., Schroeder, D. M., Holt, J. W., Sugden, D. E., Blankenship, D. D., van Ommen, T. D., and Siegert, M. J.,A dynamic early East Antarctic Ice Sheet suggested by ice covered fjord landscapes, 2011, Nature, 474, pp.72-75, https://doi.org/10.1038/nature10114\n<br>\nYoung, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D., and Quartini, E.,The distribution of basal water between Antarctic subglacial lakes from radar sounding,2016,Philosophical Transactions of the Royal Society A, 374 (20140297), pp.1-21, https://doi.org/10.1098/rsta.2014.0297\n\n<p>\n<b>Change Log</b>\n<br>\nChanges from V1: changes to gridding parameters to more closely match the figures from Young 2016; updated metadata gridding description"]} 
    more » « less
  9. {"Abstract":["This code generates figures for a paper titled "Coupled ice sheet structure and bedrock geology in the deep interior of East Antarctica: Results from Dome A and the South Pole Basin" submitted to Geophysical Research Letters. All four figures in the main text are generated, along with one of the supplementary figures. The code has been updated from v0.6 to account for reviewer comments."]} 
    more » « less
  10. The Center for Oldest Ice Exploration (COLDEX) is a US initiative funded to search for climate records over the last 5 million years, including locating sites for an accessible continuous ice core going back 1.5 million years. As part of this effort, COLDEX has mapped the southern flank of Dome A, East Antarctica using an instrumented Basler, including dual frequency radar observations of the ice sheet and ice bed, as well as potential fields measurements (see presentation by Kerr in EGU session G4.3) across two field seasons from Amundsen-Scott South Pole Station. The aerogeophysical system included both the UTIG VHF MARFA radar system operating at 52.5-67.5 MHz, as well as a new large high resolution UHF array from CReSIS operating at 670-750 MHz operating simultaneously. A goal of this project was to obtain airborne repeat interferometry for segments of the survey, as well as directly feed ice sheet models using englacial isochrons (see Singh presentation in EGU session CR5.6). These goals lead to a survey explicitly designed around ice sheet flow lines. While prior work had sampled the region at lithospheric scales, the COLDEX survey had two components - the first was to map the region at crustal scales (line spacing of 15 km), and the second was to map subareas at ice sheet scales (line spacing of 3 km). Immediate observations include an extensive basal unit and strong discontinuity in englacial stratigraphy that runs across the survey area and appears correlated with changes in bed interface properties. The airborne campaign will be used to inform follow up ground campaigns to understand processes relevant for old ice preservation. 
    more » « less