Abstract The equation of state (EOS) of dense strongly interacting matter can be probed by astrophysical observations of neutron stars (NS), such as X-ray detections of pulsars or the measurement of the tidal deformability of NSs during the inspiral stage of NS mergers. These observations constrain the EOS at most up to the density of the maximum-mass configuration,nTOV, which is the highest density that can be explored by stable NSs for a given EOS. However, under the right circumstances, binary neutron star (BNS) mergers can create a postmerger remnant that explores densities abovenTOV. In this work, we explore whether the EOS abovenTOVcan be measured from gravitational-wave or electromagnetic observations of the postmerger remnant. We perform a total of 25 numerical-relativity simulations of BNS mergers for a range of EOSs and find no case in which different descriptions of the matter abovenTOVhave a detectable impact on postmerger observables. Hence, we conclude that the EOS abovenTOVcan likely not be probed through BNS merger observations for the current and next generation of detectors. 
                        more » 
                        « less   
                    
                            
                            Exploring Massive Neutron Stars Towards the Mass Gap: Constraining the High Density Nuclear Equation of State
                        
                    
    
            Due to the high-density nuclear matter equation of state (EOS) being as yet unknown, neutron stars (NSs) do not have a confirmed limiting “Chandrasekhar” type maximum mass. However, observations of NSs (PSR J1614-2230, PSR J0348+0432, PSR J0740+6620, PSR J0952–0607) indicate that the NS’s limiting mass, if there is any, could be well over 2M⊙. On the other hand, there seems to be an observational mass gap (of around 2.5−5M⊙ ) between the lightest black hole and the heaviest NS. Therefore, the “massive NSs” are prime candidates to fill that gap. Several NS EOSs have been proposed using both microscopic and phenomenological approaches. In this project, we look at a class of phenomenological nuclear matter EOSs—relativistic mean field models—and see what kind of NS is formed from them. We compute the max- imum mass supported by each model EOS to observe if the mass of the NS is indeed in the “massive” NS (>2M⊙) regime. We also observe the effects of including exotic particles (hyperons, Δs) in the NS EOS and how that affects the NS mass. However, only by introducing the magnetic field, i.e. for magnetized anisotro- pic NSs, we find the mass exceeding 2.5M⊙. Using tidal deformability constraints from gravitational wave observations, we place a further check on how physical the EOS and NSs are. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2012152
- PAR ID:
- 10555438
- Publisher / Repository:
- Astronomy Reports
- Date Published:
- Journal Name:
- Astronomy Reports
- Volume:
- 67
- Issue:
- S2
- ISSN:
- 1063-7729
- Page Range / eLocation ID:
- S199 to S206
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Gravitational-wave (GW) detections of merging neutron star–black hole (NSBH) systems probe astrophysical neutron star (NS) and black hole (BH) mass distributions, especially at the transition between NS and BH masses. Of particular interest are the maximum NS mass, minimum BH mass, and potential mass gap between them. While previous GW population analyses assumed all NSs obey the same maximum mass, if rapidly spinning NSs exist, they can extend to larger maximum masses than nonspinning NSs. In fact, several authors have proposed that the ∼2.6M⊙object in the event GW190814—either the most massive NS or least massive BH observed to date—is a rapidly spinning NS. We therefore infer the NSBH mass distribution jointly with the NS spin distribution, modeling the NS maximum mass as a function of spin. Using four LIGO–Virgo NSBH events including GW190814, if we assume that the NS spin distribution is uniformly distributed up to the maximum (breakup) spin, we infer the maximum nonspinning NS mass is (90% credibility), while assuming only nonspinning NSs, the NS maximum mass must be >2.53M⊙(90% credibility). The data support the mass gap’s existence, with a minimum BH mass at . With future observations, under simplified assumptions, 150 NSBH events may constrain the maximum nonspinning NS mass to ±0.02M⊙, and we may even measure the relation between the NS spin and maximum mass entirely from GW data. If rapidly rotating NSs exist, their spins and masses must be modeled simultaneously to avoid biasing the NS maximum mass.more » « less
- 
            Abstract Over the past decade, an abundance of information from neutron-star observations, nuclear experiments and theory has transformed our efforts to elucidate the properties of dense matter. However, at high densities relevant to the cores of neutron stars, substantial uncertainty about the dense matter equation of state (EoS) remains. In this work, we present a semiparametric equation of state framework aimed at better integrating knowledge across these domains in astrophysical inference. We use a Meta-model and realistic crust at low densities, and Gaussian Process extensions at high densities. Comparisons between our semiparametric framework to fully nonparametric EoS representations show that imposing nuclear theoretical and experimental constraints through the Meta-model up to nuclear saturation density results in constraints on the pressure up to twice nuclear saturation density. We also show that our Gaussian Process trained on EoS models with nucleonic, hyperonic, and quark compositions extends the range of EoS explored at high density compared to a piecewise polytropic extension schema, under the requirements of causality of matter and of supporting the existence of heavy pulsars. We find that maximum TOV masses above $$3.2 M_{\odot}$$ can be supported by causal EoS compatible with nuclear constraints at low densities. We then combine information from existing observations of heavy pulsar masses, gravitational waves emitted from binary neutron star mergers, and X-ray pulse profile modeling of millisecond pulsars within a Bayesian inference scheme using our semiparametric EoS prior. With information from all public NICER pulsars (including PSR J0030$$+$$0451, PSR J0740$$+$$6620, PSR J0437-4715, and PSR J0614-3329), we find an astrophysically favored pressure at two times nuclear saturation density of $$P(2\rho_{\rm nuc}) = 1.98^{+2.13}_{-1.08}\times10^{34}$$ dyn/cm$$^{2}$$, a radius of a $$1.4 M_{\odot}$$ neutron star value of $$R_{1.4} = 11.4^{+0.98}_{-0.60}$$\;km, and $$M_{\rm max} = 2.31_{-0.23}^{+0.35} M_{\odot}$$ at the 90\% credible level.more » « less
- 
            For densities beyond nuclear saturation, there is still a large uncertainty in the equations of state (EoSs) of dense matter that translate into uncertainties in the internal structure of neutron stars. The MUSES Calculation Engine provides a free and open-source composable workflow management system, which allows users to calculate the EoSs of dense and hot matter that can be used, e.g., to describe neutron stars. For this work, we make use of two MUSES EoS modules, i.e., Crust Density Functional Theory and Chiral Mean Field model, with beta-equilibrium with leptons enforced in the Lepton module, then connected by the Synthesis module using different functions: hyperbolic tangent, generalized Gaussian, bump, and smoothstep. We then calculate stellar structure using the QLIMR module and discuss how the different interpolating functions affect our results.more » « less
- 
            null (Ed.)ABSTRACT We report a new equation of state (EoS) of cold and hot hyperonic matter constructed in the framework of the quark–meson-coupling (QMC-A) model. The QMC-A EoS yields results compatible with available nuclear physics constraints and astrophysical observations. It covers the range of temperatures from T = 0 to 100 MeV, entropies per particle S/A between 0 and 6, lepton fractions from YL = 0.0 to 0.6, and baryon number densities nB = 0.05–1.2 fm−3. Applications of the QMC-A EoS are made to cold neutron stars (NSs) and to hot proto-neutron stars (PNSs) in two scenarios: (i) lepton-rich matter with trapped neutrinos (PNS-I) and (ii) deleptonized chemically equilibrated matter (PNS-II). We find that the QMC-A model predicts hyperons in amounts growing with increasing temperature and density, thus suggesting not only their presence in PNS but also, most likely, in NS merger remnants. The nucleon–hyperon phase transition is studied through the adiabatic index and the speed of sound cs. We observe that the lowering of (cs/c)2 to and below the conformal limit of 1/3 is strongly correlated with the onset of hyperons. Rigid rotation of cold and hot stars, their moments of inertia and Kepler frequencies are also explored. The QMC-A model results are compared with two relativistic models, the chiral mean field model (CMF), and the generalized relativistic density functional (GRDF) with DD2 (nucleon-only) and DD2Y-T (full baryon octet) interactions. Similarities and differences are discussed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    