Abstract BackgroundPonerine ants are almost exclusively predatory and comprise many of the largest known ant species. Within this clade, the genusNeoponerais among the most conspicuous Neotropical predators. We describe the first fossil member of this lineage: a worker preserved in Miocene-age Dominican amber from Hispaniola. ResultsNeoponera vejestoriasp. nov. demonstrates a clear case of local extinction—there are no known extantNeoponeraspecies in the Greater Antilles. The species is attributable to an extant and well-defined species group in the genus, which suggests the group is older than previously estimated. Through CT scan reconstruction and linear morphometrics, we reconstruct the morphospace of extant and fossil ants to evaluate the history and evolution of predatory taxa in this island system. ConclusionsThe fossil attests to a shift in insular ecological community structure since the Miocene. The largest predatory taxa have undergone extinction on the island, but their extant relatives persist throughout the Neotropics.Neoponera vejestoriasp. nov. is larger than all other predatory ant workers known from Hispaniola, extant or extinct. Our results empirically demonstrate the loss of a functional niche associated with body size, which is a trait long hypothesized to be related to extinction risk.
more »
« less
First digital study of the frontal sinus of stem-Canini (Canidae, Carnivora): evolutionary and ecological insights throughout advanced diagnostic in paleobiology
IntroductionThe phylogenetic and ecological importance of paranasal sinuses in carnivorans was highlighted by several previous authors, mostly in extant species. Nevertheless, no specific study on this feature on extant canids, and no one on fossil representatives of the family, has been published up to now. Here, we analyze for the first time the paranasal sinus of extant and fossil canids through computed tomographic techniques to characterize them morphologically and morphometrically, making ecological inferences. MethodsTo do so, we applied for the first time an innovative deformation-based morphometric approach. ResultsThe results obtained for extant species highlight a remarkable correlation between morphology and ecomorphotypes previously defined by some scholars (namely hypercarnivorous group-hunters; small-prey hypercarnivores, mesocarnivores, hypocarnivores). Our results thus support the direct relationship between diet preferences and the development of frontal sinus in canids. Regarding fossil specimens, we reconstructed for the first time the frontal sinus of threeEucyonspecies and compared it to those of living forms. DiscussionThe best-preserved specimen, the only known cranium ofEucyon adoxusdated to the Late Pliocene of Saint-Estève (France), displayed similarities with hypercarnivorous group-hunter canids by the large sinus prominences. Given that the overall craniodental morphology ofE. adoxussuggests that it acted as a small prey hypercarnivore—similar to extantCanis simensis—the aforementioned affinities might have evolved independently, in relation to high stresses during feeding. Overall, our study demonstrates that morphological inspection and deformation-based geometric morphometrics complement each other and allow a thorough investigation of sinus shape variability, thus enabling the study of sinus morphology in other fossil carnivorans with the ultimate goal of inferring their ecological preferences.
more »
« less
- Award ID(s):
- 1902242
- PAR ID:
- 10555488
- Publisher / Repository:
- Frontiers in Ecology and Evolution
- Date Published:
- Journal Name:
- Frontiers in Ecology and Evolution
- Volume:
- 11
- ISSN:
- 2296-701X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
PremiseSolanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil comes from the early Eocene Laguna del Hunco site (ca. 52 Ma) in Chubut, Argentina, which previously yielded the only other physaloid fruit fossil,Physalis infinemundi. MethodsThe fruit morphology and calyx venation pattern of the new fossil were compared withP. infinemundiand extant species of Solanaceae. ResultsPhysalis hunickeniisp. nov. is clearly distinct fromP. infinemundiin its fruiting calyx with wider primary veins, longer and thinner lobes, and especially in its venation pattern with high density, transverse tertiary veins; these features support its placement in a new species. In comparison with extant physaloid genera, the calyx venation pattern and other diagnostic traits reinforce placement of the new fossil, likeP. infinemundi, within the tribe Physalideae of Solanaceae. ConclusionsBoth species of fossil nightshades from Laguna del Hunco represent crown‐group Solanaceae but are older than all prior age estimates of the family. Although at least 20 transoceanic dispersals have been proposed as the driver of range expansion of Solanaceae, the Patagonian fossils push back the diversification of the family to Gondwanan times. Thus, overland dispersal across Gondwana is now a likely scenario for at least some biogeographic patterns, in light of the ancient trans‐Antarctic land connections between South America and Australia.more » « less
-
Abstract Background and aimsPalm fossils are often used as evidence for warm and wet palaeoenvironments, reflecting the affinities of most modern palms. However, several extant palm lineages tolerate cool and/or arid climates, making a clear understanding of the taxonomic composition of ancient palm communities important for reliable palaeoenvironmental inference. However, taxonomically identifiable palm fossils are rare and often confined to specific facies. Although the resolution of taxonomic information they provide remains unclear, phytoliths (microscopic silica bodies) provide a possible solution because of their high preservation potential under conditions where other plant fossils are scarce. We thus evaluate the taxonomic and palaeoenvironmental utility of palm phytoliths. MethodsWe quantified phytolith morphology of 97 modern palm and other monocot species. Using this dataset, we tested the ability of five common discriminant methods to identify nine major palm clades. We then compiled a dataset of species’ climate preferences and tested if they were correlated with phytolith morphology using a phylogenetic comparative approach. Finally, we reconstructed palm communities and palaeoenvironmental conditions at six fossil sites. Key resultsBest-performing models correctly identified phytoliths to their clade of origin only 59 % of the time. Although palms were generally distinguished from non-palms, few palm clades were highly distinct, and phytolith morphology was weakly correlated with species’ environmental preferences. Reconstructions at all fossil sites suggested that palm communities were dominated by Trachycarpeae and Areceae, with warm, equable climates and high, potentially seasonal rainfall. However, fossil site reconstructions had high uncertainty and often conflicted with other climate proxies. ConclusionsWhile phytolith morphology provides some distinction among palm clades, caution is warranted. Unlike prior spatially restricted studies, our geographically and phylogenetically broad study indicates phytolith morphology may not reliably differentiate most palm taxa in deep time. Nevertheless, it reveals distinct clades, including some likely to be palaeoenvironmentally informative.more » « less
-
ABSTRACT Marine mammals have undergone a dramatic series of morphological transformations throughout their evolutionary history that facilitated their ecological transition to life in the water. Pinnipeds are a diverse clade of marine mammals that evolved from terrestrial carnivorans in the Oligocene (∼27 million years ago). However, pinnipeds have secondarily lost the dental innovations emblematic of mammalian and carnivoran feeding, such as a talonid basin or shearing carnassials. Modern pinnipeds do not masticate their prey, but can reduce prey size through chopping behavior. Typically, small prey are swallowed whole. Nevertheless, pinnipeds display a wide breadth of morphology of the post-canine teeth. We investigated the relationship between dental morphology and pinniped feeding by measuring the puncture performance of the cheek-teeth of seven extant pinniped genera. Puncture performance was measured as the maximum force and the maximum energy required to puncture a standardized prey item (Loligo sp.). We report significant differences in the puncture performance values across the seven genera, and identify three distinct categories based on cheek-teeth morphology and puncture performance: effective, ineffective and moderate puncturers. In addition, we measured the overall complexity of the tooth row using two different metrics, orientation patch count rotated (OPCR) and relief index (RFI). Neither metric of complexity predicted puncture performance. Finally, we discuss these results in the broader context of known pinniped feeding strategies and lay the groundwork for subsequent efforts to explore the ecological variation of specific dental morphologies.more » « less
-
Abstract ObjectivesThe goals of this study were to describe and interpret two new fossil assemblages of cercopithecin monkeys (n = 328), one from the Faro Daba beds (ca. 100,000 years) and the other one from the Chai Baro beds (>158,000 years old), in the Afar Rift of Ethiopia. Materials and MethodsWe describe the two assemblages and compare them to extant cercopithecin species and the smaller fossil assemblage from Asbole, Ethiopia (ca. 600 ka). We use a population‐based approach to the taxonomy given the unusually large number of specimens. Craniodental and postcranial anatomy are presented. Evidence of locomotor habitus is described and evaluated in a framework of hybridization and postcranial plasticity. ResultsWe attribute all cercopithecin specimens from both beds to cf.Chlorocebusand conclude that the Faro Daba and Chai Baro assemblages likely sample single species at each time horizon. Subtle differences between the two assemblages, mostly in postcranial morphology, are insufficient to justify separation at the species level. DiscussionThe large sample sizes and unique preservational aspects of these two assemblages open a new window into the recent evolution of guenons. Our data indicate that these fossil populations may be ancestral to the cercopithecins currently living in the Afar region of Ethiopia.more » « less
An official website of the United States government

