skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phylogeny of the Hawkmoth Tribe Ambulycini (Lepidoptera: Sphingidae): Mitogenomes from Museum Specimens Resolve Major Relationships
Abstract Ambulycini are a cosmopolitan tribe of the moth family Sphingidae, comprised of 10 genera, 3 of which are found in tropical Asia, 4 in the Neotropics, 1 in Africa, 1 in the Middle East, and 1 restricted to the islands of New Caledonia. Recent phylogenetic analyses of the tribe have yielded conflicting results, and some have suggested a close relationship of the monobasic New Caledonian genus CompsulyxHolloway, 1979 to the Neotropical ones, despite being found on opposite sides of the Pacific Ocean. Here, we investigate relationships within the tribe using full mitochondrial genomes, mainly derived from dry-pinned museum collections material. Mitogenomic data were obtained for 19 species representing nine of the 10 Ambulycini genera. Phylogenetic trees are in agreement with a tropical Asian origin for the tribe. Furthermore, results indicate that the Neotropical genus Adhemarius Oiticica Filho, 1939 is paraphyletic and support the notion that OrectaRothschild & Jordan 1903 and TrogolegnumRothschild & Jordan, 1903 may need to be synonymized. Finally, in our analysis the Neotropical genera do not collectively form a monophyletic group, due to a clade comprising the New Caledonian genus Compsulyx and the African genus BatocnemaRothschild & Jordan, 1903 being placed as sister to the Neotropical genus ProtambulyxRothschild & Jordan, 1903. This finding implies a complex biogeographic history and suggests the evolution of the tribe involved at least two long-distance dispersal events.  more » « less
Award ID(s):
1612862
PAR ID:
10555715
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Mutanen, Marko
Publisher / Repository:
Insect Systematics & Diversity
Date Published:
Journal Name:
Insect Systematics and Diversity
Volume:
3
Issue:
6
ISSN:
2399-3421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—The diverse and spectacular Hibisceae tribe comprises over 750 species. No studies, however, have broadly sampled across the dozens of genera in the tribe, leading to uncertainty in the relationships among genera. The non-monophyly of the genusHibiscusis infamous and challenging, whereas the monophyly of most other genera in the tribe has yet to be assessed, including the large genusPavonia.Here we significantly increase taxon sampling in the most complete phylogenetic study of the tribe to date. We assess monophyly of most currently recognized genera in the tribe and include three and thirteen newly sampled sections ofHibiscusandPavonia,respectively. We also include five rarely sampled genera and 137 species previously unsampled. Our phylogenetic trees demonstrate thatHibiscus, as traditionally defined, encompasses at least 20 additional genera. The status ofPavoniaemerges as comparable in complexity toHibiscus. We offer clarity in the phylogenetic placement of several taxa of uncertain affinity (e.g.Helicteropsis,Hibiscadelphus, Jumelleanthus,andWercklea). We also identify two new clades and elevate them to the generic rank with the recognition of two new monospecific genera: 1)BlanchardiaM.M.Hanes & R.L.Barrett is a surprising Caribbean lineage that is sister to the entire tribe, and 2)AstrohibiscusMcLay & R.L.Barrett represents former members ofHibiscus caesiuss.l.CraveniaMcLay & R.L.Barrett is also described as a new genus for theHibiscus panduriformisclade, which is allied toAbelmoschus. Finally, we introduce a new classification for the tribe and clarify the boundaries ofHibiscusandPavonia. 
    more » « less
  2. Beutel, Rolf (Ed.)
    Abstract The darkling beetle tribe Adesmiini (Tenebrionidae: Pimeliinae) is a prominent part of African and western Palearctic desert faunas, with most species being day-active fast-running detritivores. Taxonomic diversity within the tribe is highest in the southern Afrotropical realm (where all genera are present); only 1 genus, the species-rich Adesmia, occurs north of the Sahara. Despite notable species, such as the fog-basking beetle Onymacris unguicularis (a focal taxon in desert ecological research), Adesmiini has undergone few modern taxonomic or phylogenetic studies. Hence, generic concepts and pronounced diurnal activity, rare in the primarily nocturnal family Tenebrionidae, remain poorly explored. To investigate evolutionary relationships and diurnal origins within the tribe, we generated a genomic dataset of 529 protein-coding genes across 43 species spanning 10 of 11 Adesmiini genera. Our resulting phylogeny for the tribe rejects the monophyly of 5 currently recognized Adesmiini genera (i.e., Adesmia, Metriopus, Onymacris, Physadesmia, and Stenocara). Ancestral state reconstruction of diurnal activity using eye shape as a proxy supports the hypothesis that Adesmiini were primitively diurnal, followed by at least 4 shifts to nocturnal or crepuscular activity. 
    more » « less
  3. Hines, Heather (Ed.)
    Abstract We reconstruct the phylogeny of the most speciose genus of cuckoo bees, genus Nomada Scopoli, 1770, using 221 species from throughout its distribution, yet with a strong emphasis on the West Palearctic. For phylogenetic reconstruction, we sequenced ultraconserved elements, allowing robust phylogenetic estimates with both concatenation and coalescent-based methods. By integrating extensive information on Nomada host records, we study macroevolutionary patterns of host associations, transitions, and phylogenetic conservatism. Using Bayesian divergence time estimates, we assess the historical biogeography of the genus, focusing on the West Palearctic. Our results show that Nomada likely originated in the Eastern Mediterranean and Near Eastern region, and likely expanded its range to a near-global distribution from there. We recovered long-standing phylogenetic conservatism in the host usage of Nomada and provided strong statistical evidence for an ancestral host association with Andrena and its most recent common ancestor. However, host transitions occurred multiple times independently in the natural history of Nomada, and species of the genus are brood parasites in at least 5 genera and 4 different families of bees in the Old World. At last, we systematically revise the taxonomy of the Old World Nomada by integrating morphological study with our well-supported phylogenetic estimates. We re-establish the genus Acanthonomada Schwarz, 1966, stat. res., as a distinct, second genus in the tribe Nomadini. We recognize 13 subgenera for Nomada, 9 of which are described as new: Afronomada Straka and Bossert, subgen. nov., Colliculla Straka, subgen. nov., Gestamen Straka, subgen. nov., Hungias Straka, subgen. nov., Mininomada Straka, subgen. nov., Nomacolla Straka, subgen. nov., Nomonosa Straka, subgen. nov., Plumada Straka, subgen. nov., and Profuga Straka, subgen. nov. Aside from the subgenus Nomada s.s., we reinstitute 3 previously synonymized subgenera: Heminomada Cockerell, 1902, stat. res., Holonomada Robertson, 1903, stat. res., and Hypochrotaenia Holmberg, 1886 stat. res. A total of 15 subgeneric names are formally synonymized with the newly established subgeneric concepts. 
    more » « less
  4. Abstract The Platypleurini is a large group of charismatic cicadas distributed from Cape Agulhas in South Africa, through tropical Africa, Madagascar, India and eastern Asia to Japan, with generic diversity concentrated in equatorial and southern Africa. This distribution suggests the possibility of a Gondwanan origin and dispersal to eastern Asia from Africa or India. We used a four‐gene (three mitochondrial) molecular dataset, fossil calibrations and molecular clock information to explore the phylogenetic relationships of the platypleurine cicadas and the timing and geography of their diversification. The earliest splits in the tribe were found to separate forest genera in Madagascar and equatorial Africa from the main radiation, and all of the Asian/Indian species sampled formed a younger clade nested well within the African taxa. The tribe appears to have diversified during the Cenozoic, beginningc. 50–32 Ma, with most extant African lineages originating in the Miocene or later, well after the breakup of the Gondwanan landmass. Biogeographical analysis suggests an African origin for the tribe and a single dispersal event founding the Asian platypleurines, although additional taxon sampling and genetic data will be needed to confirm this pattern because key nodes in the tree are still weakly supported. Two Platypleurini genera from Madagascar (PycnaAmyot & Audinet‐Serville,YangaDistant) are found to have originated by late Miocene dispersal of a single lineage from Africa. The genusPlatypleurais recovered as polyphyletic, withPlatypleura signiferaWalker from South Africa and many Asian/Indian species apparently requiring assignment to different genera, and a newPlatypleuraconcept is proposed with the synonymization ofAzanicadaVilletsyn.n.The generaOrapaDistant andHamzaDistant, currently listed within separate tribes but suspected of platypleurine affinity, are nested deeply within the Platypleurini radiation. The tribe Orapinisyn.n. is here synonymized while the tribe Hamzini is pending a decision of the ICZN to preserve nomenclatorial stability. 
    more » « less
  5. Abstract Distephanus Cass. comprises 43 distinctive species of shrubs and small trees that have been placed historically within the ironweed tribe, Vernonieae (Asteraceae). Using the most expansive sampling of Distephanus to date, this study aims to test the monophyly of this genus and facilitate its classification. Molecular phylogenetic analyses were conducted using four molecular markers from the nuclear and plastid genomes. These data also supported divergence dating analyses that were performed to understand the timing of diversification events within Distephanus and other related genera as well as ancestral area reconstruction analyses to infer the biogegraphic history of species diversity in this group. Results from this study indicate that, as currently circumscribed, Vernonieae is not monophyletic and that Distephanus is, in fact, sister to a clade that comprises Vernonieae and another tribe, Moquinieae, which only includes two species restricted to Brazil. On the basis of these findings, Distephanus is classified in a new tribe that we describe here, Distephaneae. This new tribe comprises 41 species of Distephanus that are easily distinguished from Moquinieae and Vernonieae based on the presence of florets with yellow corollas and trinervate leaves. 
    more » « less