skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modelling pyroclastic density currents of the April 2021 La Soufrière, St Vincent eruption: from rapid invasion maps to field-constrained numerical simulations
Abstract The April 2021 La Soufrière of St Vincent eruption generated several pyroclastic density currents (PDCs) during the 2 weeks of the crisis, from 9 to 22 April. To support the hazard assessment team during this eruption, numerical simulations were performed in real time and generated rapid scenario-based PDC invasion maps with the two-phase version of the code VolcFlow, which was able to simulate both the concentrated and dilute regime of PDCs. To generate the maps, only the source properties (shape and location) and the initial volume used to generate the PDCs were varied, all other input parameters were kept constant and estimated from previous simulations. New simulations were then performed based on the field-based deposit map to assess the code's ability to simulate such PDCs. Results show that the syn-crisis invasion maps satisfactorily mimic the observed valley-confined PDCs, while unconfined dilute PDCs were overestimated. The results also highlight that simulation results are greatly improved with additional field-based data, which help constrain the PDC sequence. Numerous lessons were learned, including (1) how to choose the most critical input parameters, (2) the importance of syn-eruptive radar imagery and (3) the potential of this two-phase model for rapid hazard assessment purposes.  more » « less
Award ID(s):
1751905
PAR ID:
10555826
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.1144
Date Published:
Journal Name:
Geological Society, London, Special Publications
Volume:
539
Issue:
1
ISSN:
0305-8719
Format(s):
Medium: X Size: p. 291-310
Size(s):
p. 291-310
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Effective volcanic hazard management in regions where populations live in close proximity to persistent volcanic activity involves understanding the dynamic nature of hazards, and associated risk. Emphasis until now has been placed on identification and forecasting of the escalation phase of activity, in order to provide adequate warning of what might be to come. However, understanding eruption hiatus and post-eruption unrest hazards, or how to quantify residual hazard after the end of an eruption, is also important and often key to timely post-eruption recovery. Unfortunately, in many cases when the level of activity lessens, the hazards, although reduced, do not necessarily cease altogether. This is due to both the imprecise nature of determination of the “end” of an eruptive phase as well as to the possibility that post-eruption hazardous processes may continue to occur. An example of the latter is continued dome collapse hazard from lava domes which have ceased to grow, or sector collapse of parts of volcanic edifices, including lava dome complexes. We present a new probabilistic model for forecasting pyroclastic density currents (PDCs) from lava dome collapse that takes into account the heavy-tailed distribution of the lengths of eruptive phases, the periods of quiescence, and the forecast window of interest. In the hazard analysis, we also consider probabilistic scenario models describing the flow’s volume and initial direction. Further, with the use of statistical emulators, we combine these models with physics-based simulations of PDCs at Soufrière Hills Volcano to produce a series of probabilistic hazard maps for flow inundation over 5, 10, and 20 year periods. The development and application of this assessment approach is the first of its kind for the quantification of periods of diminished volcanic activity. As such, it offers evidence-based guidance for dome collapse hazards that can be used to inform decision-making around provisions of access and reoccupation in areas around volcanoes that are becoming less active over time. 
    more » « less
  2. Abstract Aluto volcano (Central Ethiopia) displays a complex, hybrid topography, combining elements typical of caldera systems (e.g., a central, flat caldera floor) and stratovolcanoes (e.g., relatively high and steep, radial flanks, related to eruptions occurring clustered in space). The most recent known eruptions at Aluto have commonly generated column‐collapse pyroclastic density currents (PDCs), a hazardous phenomenon that can pose a significant risk to inhabited areas on and around the volcano. In order to analyze and quantify the role that Aluto's complex topography has on PDC hazard, we apply a versatile probabilistic strategy, which merges the TITAN2D model for PDCs with a novel zero‐censored Gaussian Process (zGP) emulator, enabling robust uncertainty quantification at tractable computational costs. Results from our analyses indicate a critical role of the eruptive vent location, but also highlight a complex interplay between the topography and PDC volume and mobility. The relative importance of each factor reciprocally depends on the other factors. Thus, large PDCs (≥0.1–0.5 km3) can diminish the influence of topography over proximal regions of flow propagation, but PDCs respond to large‐ and small‐scale topographic features over medial to distal areas, and the zGP captures processes like PDC channelization and overbanking. The novel zGP can be applied to other PDC models and can enable specific investigations of PDC dynamics, topographic interactions, and PDC hazard at many volcanic systems worldwide. Potentially, it could also be used during volcanic crises, when time constraints usually only permit computation of scenario‐based hazard assessments. 
    more » « less
  3. Explosive eruption jets rising through relatively shallow water layers form eruption columns that can deliver volcanic ash, gases, and entrained water to the atmosphere and ocean in sequence or simultaneously, depending on eruption source parameters (Gilchrist et al. 2023). Despite the mesospheric eruption column height of the January 15, 2022 eruption of Hunga Tonga-Hunga Ha’apai (HTHH), the majority of erupted material was delivered to the surrounding seafloor via submarine pyroclastic density currents (PDCs). Deposits of HTHH show evidence of axisymmetric terraced deposits, which we show are linked to the mass eruption rate and dynamics of column collapse. We use scaled analog experiments on multiphase sand-water fountains injected into water layers of varying depth to model the collapse dynamics of shallow water eruption columns and to link fountain source conditions to deposit topography. The source strength of multiphase fountains predicts whether they collapse periodically or continuously via sedimentation waves with varying frequency and momentum. In turn, the frequency and momentum of sedimentation waves impacting the tank base determines whether ground-hugging gravity currents flowing out of the sedimentation wave impact zone are initially erosive or depositional. On the basis of experiments, we propose that syn-eruptive shallow submarine caldera deposits that show evidence of terracing and proximal scouring are linked to relatively strong eruption jets in the regime where the jet is in partial collapse or total collapse. In these regimes, the eruption jet collapses periodically as sedimentation waves that erode the deposit in the impact zone and transition into submarine PDCs that deposit the sedimentation wave mixture into regularly spaced terraces thereafter (Fig. 1, black boxes). In contrast, we expect weak eruption jets to occur in the total collapse regime where sedimentation waves descend in rapid succession and effectively supply submarine PDCs continuously which, in turn, build deposits lacking terraces (Fig. 1, blue box). For common values of caldera eruption source parameters, we link submarine PDC deposit morphology to eruption jet strength and plausible mass eruption rates. 
    more » « less
  4. Abstract The effects of pyroclastic density currents (PDCs) can be devastating, so understanding their internal dynamics and evolution is important for hazard assessment. We use damaged trees located around Mount St. Helens (USA) as proxy for the dynamic pressure ( P dyn ) of the PDC erupted on 18 May 1980. We recorded the location, distribution, and foliage preservation of damaged trees within the medial and distal parts of the devastated forest. Sub-meter resolution aerial photographs from a month after the eruption allow distinction between standing trees that retained foliage from those that were stripped. Heights of standing trees were estimated from the measured lengths of their shadows. The number of standing trees was counted within defined areas along the propagation paths of PDCs. From the measured tree heights, we estimated tree toppling stresses from P dyn . Overall, P dyn of the PDC head within the medial to distal portions of the blowdown zone ranged from 10 to 35 kPa. P dyn likely waned with distance, as shown by the increased number of standing trees in the outer parts of the devastated area. In addition, we find clusters of standing trees on the lee sides of some hills. We propose that these clusters survived because they were primarily impacted by lower dynamic pressures extant within the PDC body, with foliage retention or stripping as a function of the P dyn evolution in the PDC body. We estimate that P dyn of the body was less than the estimated maximum P dyn of the PDC head by 12 ± 4 kPa. 
    more » « less
  5. Abstract Pyroclastic density currents (PDCs) present significant hazards due to their high temperatures and dynamic pressures. Accurate estimation of dynamic pressure, vital for assessing potential damage, requires knowledge of the vertical variations of velocity and particle concentration within the PDC, particularly in the first few meters of the flow above the ground. Existing approaches to dynamic pressure calculations used in hazard assessment are often based on average values for velocity and particle volume fraction. These average values may misrepresent the flow dynamics, especially near the base of the flow where the gradients of flow variables are larger. Here, we present a new, physically based approach that allows for the calculation of the vertical profiles of velocity and concentration from a combination of depth‐averaged values for these properties and non‐dimensional flow parameters. Finally, we demonstrate the use of these profiles within an existing shallow‐water model and show its potential applications toward probabilistic hazard assessment. 
    more » « less