Abstract The evolution of complex dentitions in mammals was a major innovation that facilitated the expansion into new dietary niches, which imposed selection for tight form–function relationships. Teeth allow mammals to ingest and process food items by applying forces produced by a third-class lever system composed by the jaw adductors, the cranium, and the mandible. Physical laws determine changes in jaw adductor (biting) forces at different bite point locations along the mandible (outlever), thus, individual teeth are expected to experience different mechanical regimes during feeding. If the mammal dentition exhibits functional adaptations to mandible feeding biomechanics, then teeth are expected to have evolved to develop mechanically advantageous sizes, shapes, and positions. Here, we present bats as a model system to test this hypothesis and, more generally, for integrative studies of mammal dental diversity. We combine a field-collected dataset of bite forces along the tooth row with data on dental and mandible morphology across 30 bat species. We (1) describe, for the first time, bite force trends along the tooth row of bats; (2) use phylogenetic comparative methods to investigate relationships among bite force patterns, tooth, and mandible morphology; and (3) hypothesize how these biting mechanics patterns may relate to the developmental processes controlling tooth formation. We find that bite force variation along the tooth row is consistent with predictions from lever mechanics models, with most species having the greatest bite force at the first lower molar. The cross-sectional shape of the mandible body is strongly associated with the position of maximum bite force along the tooth row, likely reflecting mandibular adaptations to varying stress patterns among species. Further, dental dietary adaptations seem to be related to bite force variation along molariform teeth, with insectivorous species exhibiting greater bite force more anteriorly, narrower teeth and mandibles, and frugivores/omnivores showing greater bite force more posteriorly, wider teeth and mandibles. As these craniodental traits are linked through development, dietary specialization appears to have shaped intrinsic mechanisms controlling traits relevant to feeding performance.
more »
« less
A systematic compendium of turtle mandibular anatomy using digital dissections of soft tissue and osteology
Abstract Turtles are a charismatic reptile group with a peculiar body plan, which most notably includes the shell. Anatomists have often focused descriptive efforts on the shell and other strongly derived body parts, such as the akinetic skull, or the cervical vertebrae. Other parts of turtle osteology, like the girdles, limbs, and mandibles, are documented with less rigor and detail. The mandible is the primary skeletal element involved in food acquisition and initial food processing of turtles, and its features are thus likely linked to feeding ecology. In addition, the mandible of turtles is composed of up to seven bones (sometimes fused to as little as three) and has thus anatomical complexity that may be insightful for systematic purposes and phylogenetic research. Despite apparent complexity and diversity to the mandible of turtles, this anatomical system has not been systematically studied, not even in search of characters that might improve phylogenetic resolution. Here, we describe the mandibular osteology for all major subclades of extant turtles with the help of digitally dissected 3D models derived from high‐resolution computed tomography (μCT) scans of 70 extant species. We provide 31 fully segmented mandibles, as well as 3D models of the mandibular musculature, innervation, and arterial circulation of the cryptodireDermatemys mawii. We synthesize observed variation into 51 morphological characters, which we optimize onto a molecular phylogeny. This analysis shows some mandibular characters to have high systematic value, whereas others are highly homoplastic and may underlie ecological influences or other factors invoking variation.
more »
« less
- Award ID(s):
- 1902242
- PAR ID:
- 10555906
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- The Anatomical Record
- Volume:
- 306
- Issue:
- 6
- ISSN:
- 1932-8486
- Page Range / eLocation ID:
- 1228 to 1303
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Actinopterygii is a major extant vertebrate group, but limited data are available for its earliest members. Here we investigate the morphology of Devonian actinopterygians, focusing on the lower jaw. We use X‐ray computed tomography (XCT) to provide comprehensive descriptions of the mandibles of 19 species, which span the whole of the Devonian and represent roughly two‐thirds of all taxa known from more than isolated or fragmentary material. Our findings corroborate previous reports in part but reveal considerable new anatomical data and represent the first detailed description for roughly half of these taxa. The mandibles display substantial variation in size, spanning more than an order of magnitude. Although most conform to a generalized pattern of a large dentary and one or two smaller infradentaries, XCT data reveal significant differences in the structure of the jaw and arrangement of teeth that may be of functional relevance. We report the presence of a rudimentary coronoid process in several taxa, contributed to by the dentary and/or infradentaries, as well a raised articular region, resulting in a mandible with an offset bite and that functions as a bent level arm. Among the most striking variation is that of tooth morphology: several taxa have heterodont dentary teeth that vary in size and orientation, and multiple variations on enlarged, whorl‐like and posteriorly‐oriented anterior coronoid dentition are observed. We use these new data to revise morphological characters that may be of phylogenetic significance and consider the possible functional implicationds of these traits. The observed variation in mandible form and structure suggests previously unappreciated functional diversity among otherwise morphologically homogenous Devonian ray‐finned fishes.more » « less
-
Abstract Saxochelys gilbertiis a baenid turtle from the Late Cretaceous Hell Creek Formation of the United States of America known from cranial, shell, and other postcranial material. Baenid turtles are taxonomically diverse and common fossil elements within Late Cretaceous through Eocene faunas. Detailed anatomical knowledge is critical to understanding the systematics and morphological evolution of the group. This is particularly important as baenids represent an important group of continental vertebrates that survived the mass extinction event associated with the Cretaceous/Paleogene boundary. High-resolution micro-computed tomography scanning of the holotype skull reveals additional anatomical details for the already well-knownSaxochelys gilberti. This includes the revision of some anatomical statements from the original description, but also detailed knowledge on internal anatomical features of the braincase and the description of a well-preserved axis (cervical vertebra 2). Our new detailed description and previous work on the shell and postcrania makeSaxochelysone of the best-described, nearly complete baenid turtles, which are often only known from either isolated shell or cranial material. A revised phylogenetic analysis confirms the position ofSaxochelys gilbertias a derived baenid (Eubaeninae) more closely related toBaena arenosathan toEubaena cephalica.more » « less
-
Metoposaurids are a clade of large-bodied temnospondyls commonly found in non-marine Late Triassic deposits across northern Pangea. Three taxa are known from North America: Anaschisma browni , Apachesaurus gregorii , and “ Metoposaurus ” bakeri . While the osteology of most metoposaurids has been recently revised, that of a few taxa, including “ Metoposaurus ” bakeri remains poorly characterized. This taxon was formally described in 1931 as “ Buettneria bakeri ,” and its taxonomy has remained in flux ever since then. “ Metoposaurus ” bakeri is the earliest appearing metoposaurid in North America (Carnian of Texas), and Metoposaurus has frequently been utilized as an index taxon of the Otischalkian estimated holochron (‘land vertebrate faunachron’) and for biostratigraphic correlations with other geographic regions. The taxonomy of this species is therefore relevant for both taxonomic experts and biostratigraphers. Here we redescribe all material from the type locality of “ M .” bakeri , the Elkins Place bone bed, and perform a phylogenetic analysis using a revised matrix assembled from several previous studies. Anatomical comparisons and phylogenetic analyses do not support placement in either Metoposaurus , a taxon otherwise only found in Europe, or Anaschisma , the only other large-bodied taxon from North America. Therefore, we erect a new genus, Buettnererpeton gen. nov., to accommodate this species. Metoposaurus is consequently absent from North America, and this genus cannot be used in global biostratigraphy. Phylogenetic analyses provide evidence that the phylogeny of the Metoposauridae remains extremely labile, with drastic differences in topological resolution and structure being linked to just a handful of characters and scores. Metoposaurids’ morphological conservatism and the increased recognition of intraspecific variation thus continue to be major confounds to elucidating the evolutionary history of this clade.more » « less
-
Abstract Scolecophidian snakes have long posed challenges for scholars interested in elucidating their anatomy. The importance, and relative paucity, of high‐quality anatomical data pertaining to scolecophidians was brought into sharp focus in the late 20 th century as part of a controversy over the phylogeny and ecological origin of snakes. The basal position of scolecophidians in the phylogeny of snakes makes their anatomy, behavior, ecology, and evolution especially important for such considerations. The depauperate fossil record for the group meant that advances in understanding their evolutionary history were necessarily tied to biogeographic distributions and anatomical interpretations of extant taxa. Osteological data, especially data pertaining to the skull and mandible, assumed a dominant role in shaping historical and modern perspectives of the evolution of scolecophidians. Traditional approaches to the exploration of the anatomy of these snakes relied heavily upon serial‐sectioned specimens and cleared‐and‐stained specimens. The application of X‐ray computed tomography (CT) to the study of scolecophidians revolutionized our understanding of the osteology of the group, and now, via diffusible iodine‐based contrast‐enhanced computed tomography (diceCT), is yielding data sets on internal soft anatomical features as well. CT data sets replicate many aspects of traditional anatomical preparations, are readily shared with a global community of scholars, and now are available for unique holotype and other rare specimens. The increasing prevalence and relevance of CT data sets is a strong incentive for the establishment and maintenance of permanent repositories for digital data.more » « less
An official website of the United States government

