skip to main content


Title: Revision of the Late Triassic metoposaurid “ Metoposaurus ” bakeri (Amphibia: Temnospondyli) from Texas, USA and a phylogenetic analysis of the Metoposauridae
Metoposaurids are a clade of large-bodied temnospondyls commonly found in non-marine Late Triassic deposits across northern Pangea. Three taxa are known from North America: Anaschisma browni , Apachesaurus gregorii , and “ Metoposaurus ” bakeri . While the osteology of most metoposaurids has been recently revised, that of a few taxa, including “ Metoposaurus ” bakeri remains poorly characterized. This taxon was formally described in 1931 as “ Buettneria bakeri ,” and its taxonomy has remained in flux ever since then. “ Metoposaurus ” bakeri is the earliest appearing metoposaurid in North America (Carnian of Texas), and Metoposaurus has frequently been utilized as an index taxon of the Otischalkian estimated holochron (‘land vertebrate faunachron’) and for biostratigraphic correlations with other geographic regions. The taxonomy of this species is therefore relevant for both taxonomic experts and biostratigraphers. Here we redescribe all material from the type locality of “ M .” bakeri , the Elkins Place bone bed, and perform a phylogenetic analysis using a revised matrix assembled from several previous studies. Anatomical comparisons and phylogenetic analyses do not support placement in either Metoposaurus , a taxon otherwise only found in Europe, or Anaschisma , the only other large-bodied taxon from North America. Therefore, we erect a new genus, Buettnererpeton gen. nov., to accommodate this species. Metoposaurus is consequently absent from North America, and this genus cannot be used in global biostratigraphy. Phylogenetic analyses provide evidence that the phylogeny of the Metoposauridae remains extremely labile, with drastic differences in topological resolution and structure being linked to just a handful of characters and scores. Metoposaurids’ morphological conservatism and the increased recognition of intraspecific variation thus continue to be major confounds to elucidating the evolutionary history of this clade.  more » « less
Award ID(s):
1947094
NSF-PAR ID:
10409448
Author(s) / Creator(s):
;
Date Published:
Journal Name:
PeerJ
Volume:
10
ISSN:
2167-8359
Page Range / eLocation ID:
e14065
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sosa-Calvo, Jeffrey (Ed.)
    Abstract The genus Cryptopone Emery contains 25 species of litter and soil ants, 5 of which occur in the Americas. Cryptopone gilva (Roger) occurs in the southeastern United States and cloud forests of Mesoamerica, exhibiting an uncommon biogeographic disjunction observed most often in plants. We used phylogenomic data from ultraconserved elements (UCEs), as well as mitogenomes and legacy markers, to investigate phylogenetic relationships, species boundaries, and divergence dates among New World Cryptopone. Species delimitation was conducted using a standard approach and then tested using model-based molecular methods (SNAPP, BPP, SODA, and bPTP). We found that Cryptopone as currently constituted is polyphyletic, and that all the South American species belong to Wadeura Weber, a separate genus unrelated to Cryptopone. A single clade of true Cryptopone occurs in the Americas, restricted to North and Central America. This clade is composed of four species that originated ~4.2 million years ago. One species from the mountains of Guatemala is sister to the other three, favoring a vicariance hypothesis of diversification. The taxonomy of the New World Cryptopone and Wadeura is revised. Taxonomic changes are as follows: Wadeura Weber is resurrected, with new combinations W. guianensis Weber, W. holmgreni (Wheeler), and W. pauli (Fernandes & Delabie); C. guatemalensis (Forel) (rev. stat.) is raised to species and includes C. obsoleta (Menozzi) (syn. nov.). The following new species are described: Cryptopone gilvagrande, C. gilvatumida, and Wadeura holmgrenita. Cryptopone hartwigi Arnold is transferred to Fisheropone Schmidt and Shattuck (n. comb.). Cryptopone mirabilis (Mackay & Mackay 2010) is a junior synonym of Centromyrmex brachycola (Roger) (syn. nov.). 
    more » « less
  2. Abstract

    Amphisbaenians are a poorly understood clade of fossorial lizards. Because of their derived anatomy and relative scarcity, the systematics of the clade and its placement within squamates has long been controversial. Traditional approaches grouped species into four assemblages according to burrowing behavior and cranial morphology, resulting in the recognition of “shovel‐headed,” “round‐headed,” “keel‐headed,” and “spade‐headed” morphotypes. Recent phylogenetic analyses do not support the monophyly of the taxa that share those morphotypes. Detailed analyses of cranial osteology were previously accomplished using high‐resolution x‐ray computed tomography (HRXCT) for the “shovel‐headed”Rhineura hatcherii(Rhineruidae) and the “spade‐headed”Diplometopon zarudnyi(Trogonophidae). A detailed description of the “round‐headed”Amphisbaena albawas previously completed based upon traditional “dry” skeletal specimens. Seven species of the “round‐headed”Blanus(Blanidae) were also analyzed using HRXCT. The goal of that project was a comparative analysis of all extant species ofBlanusrather than a detailed, bone‐by‐bone description of one species, but certainly is useful for comparison with another “round‐headed” taxon. The “round‐headed” morphotype is by far the most common among amphisbaenians and is much in need of further documentation. We use HRXCT imagery to provide additional data about the disparity in cranial morphology among amphisbaenians. Those data allow us to provide another detailed description of a “round‐headed” amphisbaenian, the poorly known southern African speciesZygaspis quadrifrons. HRXCT is ideal for this relatively rare and diminutive species. We are able to visualize and describe a detailed reconstruction of the entire skull as well as individual cranial elements. Comparisons with other species that were described in similar detail—D.zarudnyi,Spathorhynchus fossorium,R.hatcherii, andA.alba—and to a lesser degree withBlanus, reveal a complex mosaic of morphological features of the skull inZygaspis. Preliminary data suggest that intraspecific variation is present withinZ.quadrifrons, and interspecific variation among other species ofZygaspismay be sufficient for species‐level recognition based on cranial osteology. Our description is, therefore, also intended to serve as a baseline for comparative analysis of other specimens ofZ.quadrifronsand of other species within the genus.

     
    more » « less
  3. Abstract Aim

    Fossil data may be crucial to infer biogeographical history, especially in taxa with tropical trans‐Pacific distributions. Here, we use extinct and extant trochanteriid flattened spiders to test hypotheses that could explain its trans‐Pacific disjunct distribution, including a Boreotropical origin with a North Atlantic dispersal, an African origin with South Atlantic dispersal and an Eurasian origin with Bering Bridge route.

    Location

    World‐wide.

    Taxon

    Trochanteriidae,PlatorDoliomalusVectius(PDV) clade.

    Methods

    MicroCT was used to collect morphological data from an undescribed Baltic amber fossil. These data were used with additional fossils and extant species in a total‐evidence, tip‐dated phylogenetic analysis. We tested different scenarios using constrained dispersal matrices in a Bayesian approach. An analysis with fossils pruned was also performed to explore how lack of fossil data might impact inferences of biogeographical process.

    Results

    The phylogenetic analyses allowed us to place the new fossil in the genusPlator. Analyses without fossils suggest an African origin with a dispersal to Asia from India and a South Atlantic dispersal to South America. When fossils are included, hypothesis‐testing rejects this scenario and equally supports a Boreotropical and an Afro‐European origin with a South Atlantic route and a dispersal to Asia from Europe.

    Main conclusions

    Biogeographical inferences of disjunctly distributed taxa should be interpreted with caution when fossils are not included. Although one alternative hypothesis was not completely rejected, results show that the Boreotropical hypothesis for the PDV clade could be a robust explanation for its actual distribution. This hypothesis is mostly overlooked in animal taxa and rigorous tests with other taxa with similar distributions may reveal that a Boreotropical origin is common. We discuss methodological approaches that could improve biogeographical tests using fossils as terminals.

     
    more » « less
  4. Abstract

    Reconstructing a robust phylogenetic framework is key to understanding the ecology and evolution of many economically important taxa. The crambid moth genusOstriniacontains multiple agricultural pests, and its classification and phylogeny has remained controversial because of the paucity of characters and the lack of clear morphological boundaries for its species. To address these issues, we inferred a molecular phylogeny ofOstriniausing a phylogenomic dataset containing 498 loci and 115 197 nucleotide sites and examined whether traditional morphological characters corroborate our molecular results. Our results strongly support the monophyly of one of theOstriniaspecies groups but surprisingly do not support the monophyly of the other two. Based on the extensive morphological examination and broadly representative taxon sampling of the phylogenomic analyses, we propose a revised classification of the genus, defined by three species groups (Ostrinia nubilalisspecies group,Ostrinia obumbratalisspecies group, andOstrinia penitalisspecies group), which differs from the traditional classification of Mutuura & Munroe (1970). Morphological and molecular evidence reveal the presence of a new North American species,Ostrinia multispinosaYangsp.n., closely related toO.obumbratalis. Our analyses indicate that theOstriniaancestral larval host preference was for dicots, and thatO.nubilalis(European corn borer) andOstrinia furnacalis(Asian corn borer) independently evolved a preference for feeding on monocots (i.e., maize). Males of a fewOstriniaspecies have enlarged, grooved midtibiae with brush organs that are known to attract females to increase mating success during courtship, which may represent a derived condition. Our study provides a strong evolutionary framework for this agriculturally important insect lineage.

     
    more » « less
  5. Abstract

    Caimaninae is one of the few crocodylian lineages that still has living representatives. Today, most of its six extant species are restricted to South and Central America. However, recent discoveries have revealed a more complex evolutionary history, with a fossil record richer than previously thought and a possible North American origin. Among the oldest caimanines isEocaiman cavernensis, from the Eocene of Patagonia, Argentina. It was described by George G. Simpson in the 1930s, representing the first caimanine reported for the Palaeogene. Since then,E. cavernensishas been ubiquitous in phylogenetic studies on the group, but a more detailed morphological description and revision of the taxon were lacking. Here, we present a reassessment ofE. cavernensis, based on first‐hand examination and micro‐computed tomography of the holotype, and reinterpret different aspects of its morphology. We explore the phylogenetic affinities ofE. cavernensisand other caimanines using parsimony and Bayesian inference approaches. Our results provide evidence for a monophyleticEocaimangenus within Caimaninae, even though some highly incomplete taxa (including the congenericEocaiman itaboraiensis) represent significant sources of phylogenetic instability. We also foundCulebrasuchus mesoamericanusas sister to all other caimanines and the North American globidontans (i.e.Brachychampsaand closer relatives) outside Caimaninae. A time‐calibrated tree, obtained using a fossilized birth–death model, shows a possible Campanian origin for the group (76.97 ± 6.7 Ma), which is older than the age estimated using molecular data, and suggests that the earliest cladogenetic events of caimanines took place rapidly and across the K–Pg boundary.

     
    more » « less