skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of transition rates from variational flooding using analytical theory
Variational flooding is an enhanced sampling method for obtaining kinetic rates from molecular dynamics simulations. This method is inspired by the idea of conformational flooding that employs a boost potential acting along a chosen reaction coordinate to accelerate rare events. In this work, we show how the empirical distribution of crossing times from variational flooding simulations can be modeled with analytical Kramers’ time-dependent rate (KTR) theory. An optimized bias potential that fills metastable free energy basins is constructed from the variationally enhanced sampling (VES) method. This VES-derived flooding potential is then augmented by a switching function that determines the fill level of the boost. Having a prescribed time-dependent fill rate of the flooding potential gives an analytical expression for the distribution of crossing times from KTR theory that is used to extract unbiased rates. In the case of a static boost potential, the distribution of barrier crossing times follows an expected exponential distribution, and unbiased rates are extracted from a series of boosted simulations at discrete fill levels. Introducing a time-dependent boost that increases the fill level gradually over the simulation time leads to a simplified procedure for fitting the biased distribution of crossing times to analytical theory. We demonstrate the approach for the paradigmatic cases of alanine dipeptide in vacuum, the asymmetric SN2 reaction, and the folding of chignolin in explicit solvent.  more » « less
Award ID(s):
2102189
PAR ID:
10555910
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
161
Issue:
19
ISSN:
0021-9606
Subject(s) / Keyword(s):
Variationally Enhanced Sampling Kinetics Enhanced Sampling Molecular Dynamics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gaussian accelerated molecular dynamics (GaMD) is a robust computational method for simultaneous unconstrained enhanced sampling and free energy calculations of biomolecules. It works by adding a harmonic boost potential to smooth biomolecular potential energy surface and reduce energy barriers. GaMD greatly accelerates biomolecular simulations by orders of magnitude. Without the need to set predefined reaction coordinates or collective variables, GaMD provides unconstrained enhanced sampling and is advantageous for simulating complex biological processes. The GaMD boost potential exhibits a Gaussian distribution, thereby allowing for energetic reweighting via cumulant expansion to the second order (i.e., “Gaussian approximation”). This leads to accurate reconstruction of free energy landscapes of biomolecules. Hybrid schemes with other enhanced sampling methods, such as the replica‐exchange GaMD (rex‐GaMD) and replica‐exchange umbrella sampling GaMD (GaREUS), have also been introduced, further improving sampling and free energy calculations. Recently, new “selective GaMD” algorithms including the Ligand GaMD (LiGaMD) and Peptide GaMD (Pep‐GaMD) enabled microsecond simulations to capture repetitive dissociation and binding of small‐molecule ligands and highly flexible peptides. The simulations then allowed highly efficient quantitative characterization of the ligand/peptide binding thermodynamics and kinetics. Taken together, GaMD and its innovative variants are applicable to simulate a wide variety of biomolecular dynamics, including protein folding, conformational changes and allostery, ligand binding, peptide binding, protein–protein/nucleic acid/carbohydrate interactions, and carbohydrate/nucleic acid interactions. In this review, we present principles of the GaMD algorithms and recent applications in biomolecular simulations and drug design. This article is categorized under:Structure and Mechanism > Computational Biochemistry and BiophysicsMolecular and Statistical Mechanics > Molecular Dynamics and Monte‐Carlo MethodsMolecular and Statistical Mechanics > Free Energy Methods 
    more » « less
  2. Molecular dynamics (MD) simulations generate valuable all-atom resolution trajectories of complex systems, but analyzing this high-dimensional data as well as reaching practical timescales, even with powerful supercomputers, remain open problems. As such, many specialized sampling and reaction coordinate construction methods exist that alleviate these problems. However, these methods typically don't work directly on all atomic coordinates, and still require previous knowledge of the important distinguishing features of the system, known as order parameters (OPs). Here we present AMINO, an automated method that generates such OPs by screening through a very large dictionary of OPs, such as all heavy atom contacts in a biomolecule. AMINO uses ideas from information theory to learn OPs that can then serve as an input for designing a reaction coordinate which can then be used in many enhanced sampling methods. Here we outline its key theoretical underpinnings, and apply it to systems of increasing complexity. Our applications include a problem of tremendous pharmaceutical and engineering relevance, namely, calculating the binding affinity of a protein–ligand system when all that is known is the structure of the bound system. Our calculations are performed in a human-free fashion, obtaining very accurate results compared to long unbiased MD simulations on the Anton supercomputer, but in orders of magnitude less computer time. We thus expect AMINO to be useful for the calculation of thermodynamics and kinetics in the study of diverse molecular systems. 
    more » « less
  3. A reaction limited by standard diffusion is simulated stochastically to illustrate how the continuous time random walk (CTRW) formalism can be implemented with minimum statistical error. A step-by-step simulation of the diffusive random walk in one dimension reveals the fraction of surviving reactants P(t) as a function of time, and the time-dependent unimolecular reaction rate coefficient K(t). Accuracy is confirmed by comparing the time-dependent simulation to results from the analytical master equation, and the asymptotic solution to that of Fickian diffusion. An early transient feature is shown to arise from higher spatial harmonics in the Fourier distribution of walkers between reaction sites. Statistical ‘shot’ noise in the simulation is quantified along with the offset error due to the discrete time derivative, and an optimal simulation time interval t0 is derived to achieve minimal error in the finite time-difference estimation of the reaction rate. The number of walkers necessary to achieve a given error tolerance is derived, and W = 10^7 walkers is shown to achieve an accuracy of ±0.2% when the survival probability reaches P(t) ∼ 1/3 . The stochastic method presented here serves as an intuitive basis for understanding the CTRW formalism, and can be generalized to model anomalous diffusion-limited reactions to prespecified precision in regimes where the governing wait-time distributions have no analytical solution. 
    more » « less
  4. null (Ed.)
    Understanding kinetics including reaction pathways and associated transition rates is an important yet difficult problem in numerous chemical and biological systems especially in situations with multiple competing pathways. When these high-dimensional systems are projected on low-dimensional coordinates often needed for enhanced sampling or for interpretation of simulations and experiments, one often ends up losing the kinetic connectivity of the underlying high-dimensional landscape. Thus in the low-dimensional projection metastable states might appear closer or further than they actually are. To deal with this issue, in this work we develop a formalism that learns a multi-dimensional yet minimally complex reaction coordinate (RC) for generic high-dimensional systems, such that when projected along this RC, all possible kinetically relevant pathways can be demarcated and the true high-dimensional connectivity is maintained. One of the defining attributes of our method lies in that it can work on long unbiased simulations as well as biased simulations often needed for rare event systems. We demonstrate the utility of the method by studying a range of model systems including conformational transitions in a small peptide Ace-Ala3-Nme, where we show how SGOOPderived two-dimensional and three-dimensional reaction coordinate can capture the kinetics for 23 and all 28 out of the 28 dominant state-to-state-transitions respectively. 
    more » « less
  5. Abstract Recent experiments demonstrate the control of chemical reactivities by coupling molecules inside an optical microcavity. In contrast, transition state theory predicts no change of the reaction barrier height during this process. Here, we present a theoretical explanation of the cavity modification of the ground state reactivity in the vibrational strong coupling (VSC) regime in polariton chemistry. Our theoretical results suggest that the VSC kinetics modification is originated from the non-Markovian dynamics of the cavity radiation mode that couples to the molecule, leading to the dynamical caging effect of the reaction coordinate and the suppression of reaction rate constant for a specific range of photon frequency close to the barrier frequency. We use a simple analytical non-Markovian rate theory to describe a single molecular system coupled to a cavity mode. We demonstrate the accuracy of the rate theory by performing direct numerical calculations of the transmission coefficients with the same model of the molecule-cavity hybrid system. Our simulations and analytical theory provide a plausible explanation of the photon frequency dependent modification of the chemical reactivities in the VSC polariton chemistry. 
    more » « less