skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on July 1, 2025

Title: An encoding approach for stable change point detection
Abstract Without imposing prior distributional knowledge underlying multivariate time series of interest, we propose a nonparametric change-point detection approach to estimate the number of change points and their locations along the temporal axis. We develop a structural subsampling procedure such that the observations are encoded into multiple sequences of Bernoulli variables. A maximum likelihood approach in conjunction with a newly developed searching algorithm is implemented to detect change points on each Bernoulli process separately. Then, aggregation statistics are proposed to collectively synthesize change-point results from all individual univariate time series into consistent and stable location estimations. We also study a weighting strategy to measure the degree of relevance for different subsampled groups. Simulation studies are conducted and shown that the proposed change-point methodology for multivariate time series has favorable performance comparing with currently available state-of-the-art nonparametric methods under various settings with different degrees of complexity. Real data analyses are finally performed on categorical, ordinal, and continuous time series taken from fields of genetics, climate, and finance.  more » « less
Award ID(s):
1934568
PAR ID:
10555969
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Machine Learning
Volume:
113
Issue:
7
ISSN:
0885-6125
Page Range / eLocation ID:
4133 to 4163
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce a novel geometry‐oriented methodology, based on the emerging tools of topological data analysis, into the change‐point detection framework. The key rationale is that change points are likely to be associated with changes in geometry behind the data‐generating process. While the applications of topological data analysis to change‐point detection are potentially very broad, in this paper, we primarily focus on integrating topological concepts with the existing nonparametric methods for change‐point detection. In particular, the proposed new geometry‐oriented approach aims to enhance detection accuracy of distributional regime shift locations. Our simulation studies suggest that integration of topological data analysis with some existing algorithms for change‐point detection leads to consistently more accurate detection results. We illustrate our new methodology in application to the two closely related environmental time series data sets—ice phenology of the Lake Baikal and the North Atlantic Oscillation indices, in a research query for a possible association between their estimated regime shift locations. 
    more » « less
  2. Abstract We consider the problem of estimating multiple change points for a functional data process. There are numerous examples in science and finance in which the process of interest may be subject to some sudden changes in the mean. The process data that are not in a close vicinity of any change point can be analysed by the usual nonparametric smoothing methods. However, the data close to change points and contain the most pertinent information of structural breaks need to be handled with special care. This paper considers a half-kernel approach that addresses the inference of the total number, locations and jump sizes of the changes. Convergence rates and asymptotic distributional results for the proposed procedures are thoroughly investigated. Simulations are conducted to examine the performance of the approach, and a number of real data sets are analysed to provide an illustration. 
    more » « less
  3. Change point detection is widely used for finding transitions between states of data generation within a time series. Methods for change point detection currently assume this transition is instantaneous and therefore focus on finding a single point of data to classify as a change point. However, this assumption is flawed because many time series actually display short periods of transitions between different states of data generation. Previous work has shown Bayesian Online Change Point Detection (BOCPD) to be the most effective method for change point detection on a wide range of different time series. This paper explores adapting the change point detection algorithms to detect abrupt changes over short periods of time. We design a segment-based mechanism to examine a window of data points within a time series, rather than a single data point, to determine if the window captures abrupt change. We test our segment-based Bayesian change detection algorithm on 36 different time series and compare it to the original BOCPD algorithm. Our results show that, for some of these 36 time series, the segment-based approach for detecting abrupt changes can much more accurately identify change points based on standard metrics. 
    more » « less
  4. Abstract Summary The accurate estimation of prediction errors in time series is an important problem. It immediately affects the accuracy of prediction intervals but also the quality of a number of widely used time series model selection criteria such as AIC and others. Except for simple cases, however, it is difficult or even infeasible to obtain exact analytical expressions for one-step and multi-step predictions. This may be one of the reasons that, unlike in the independent case (see Efron, 2004), until today there has been no fully established methodology for time series prediction error estimation. Starting from an approximation to the bias-variance decomposition of the squared prediction error, this work is therefore concerned with the estimation of prediction errors in both univariate and multivariate stationary time series. In particular, several estimates are developed for a general class of predictors that includes most of the popular linear, nonlinear, parametric and nonparametric time series models used in practice, where causal invertible ARMA and nonparametric AR processes are discussed as lead examples. Simulation results indicate that the proposed estimators perform quite well in finite samples. The estimates may also be used for model selection when the purpose of modeling is prediction. 
    more » « less
  5. Abstract Phylodynamics is an area of population genetics that uses genetic sequence data to estimate past population dynamics. Modern state‐of‐the‐art Bayesian nonparametric methods for recovering population size trajectories of unknown form use either change‐point models or Gaussian process priors. Change‐point models suffer from computational issues when the number of change‐points is unknown and needs to be estimated. Gaussian process‐based methods lack local adaptivity and cannot accurately recover trajectories that exhibit features such as abrupt changes in trend or varying levels of smoothness. We propose a novel, locally adaptive approach to Bayesian nonparametric phylodynamic inference that has the flexibility to accommodate a large class of functional behaviors. Local adaptivity results from modeling the log‐transformed effective population size a priori as a horseshoe Markov random field, a recently proposed statistical model that blends together the best properties of the change‐point and Gaussian process modeling paradigms. We use simulated data to assess model performance, and find that our proposed method results in reduced bias and increased precision when compared to contemporary methods. We also use our models to reconstruct past changes in genetic diversity of human hepatitis C virus in Egypt and to estimate population size changes of ancient and modern steppe bison. These analyses show that our new method captures features of the population size trajectories that were missed by the state‐of‐the‐art methods. 
    more » « less